BODIL is a molecular modeling environment geared to help the user to quickly identify key features of proteins critical to molecular recognition, especially (1) in drug discovery applications, and (2) to understand the structural basis for function. The program incorporates state-of-the-art graphics, sequence and structural alignment methods, among other capabilities needed in modern structure-function-drug target research. BODIL has a flexible design that allows on-the-fly incorporation of new modules, has intelligent memory management, and fast multi-view graphics. A beta version of BODIL and an accompanying tutorial are available at http://www.abo.fi/fak/mnf/bkf/research/johnson/bodil.html.
There is an unmet clinical need for a low cost and easy to use wearable devices for continuous cardiovascular health monitoring. A flexible and wearable wristband, based on microelectromechanical sensor (MEMS) elements array was developed to support this need. The performance of the device in cardiovascular monitoring was investigated by (i) comparing the arterial pressure waveform recordings to the gold standard, invasive catheter recording ( n = 18), (ii) analyzing the ability to detect irregularities of the rhythm ( n = 7), and (iii) measuring the heartrate monitoring accuracy ( n = 31). Arterial waveforms carry important physiological information and the comparison study revealed that the recordings made with the wearable device and with the gold standard device resulted in almost identical ( r = 0.9–0.99) pulse waveforms. The device can measure the heart rhythm and possible irregularities in it. A clustering analysis demonstrates a perfect classification accuracy between atrial fibrillation (AF) and sinus rhythm. The heartrate monitoring study showed near perfect beat-to-beat accuracy (sensitivity = 99.1%, precision = 100%) on healthy subjects. In contrast, beat-to-beat detection from coronary artery disease patients was challenging, but the averaged heartrate was extracted successfully (95% CI: −1.2 to 1.1 bpm). In conclusion, the results indicate that the device could be useful in remote monitoring of cardiovascular diseases and personalized medicine.
Timely diagnosis of cardiovascular diseases (CVD) is crucial to prevent morbidity and mortality. Atrial fibrillation (AFib) and heart failure (HF) are two prevalent cardiac disorders that are associated with a high risk of morbidity and mortality, especially if they are concurrently present. Current approaches fail to screen many at-risk individuals who would benefit from preventive treatment; while others receive unnecessary interventions. An effective approach to the detection of CVDs is mechanocardiography (MCG) by which translational and rotational precordial chest movements are monitored. In this study, we collected MCG data from a study sample of 300 hospitalized cardiac patients using multidimensional built-in inertial sensors of a smartphone. Our main objective was to detect concurrent AFib and acute decompensated HF (ADHF) using smartphone MCG (or sMCG). To this end, we adopted a supervised machine learning classification using multi-label and hierarchical classification. Logistic regression, random forest, and extreme gradient boosting were used as candidate classifiers. The results of the analysis showed the area under the receiver operating characteristic curve values of 0.98 and 0.85 for AFib and ADHF, respectively. The highest percentages of positive and negative predictive values for AFib were 91.9 and 100; while for ADHF, they were 56.9 and 88.4 for the multi-label classificationand 69.9 and 68.8 for the hierarchical classification,respectively. We conclude that using a single sMCG measurement, AFib can be detected accurately whereas ADHF can be detected with moderate certainty.
Atrial fibrillation (AFib) is the most common sustained heart arrhythmia and is characterized by irregular and excessively frequent ventricular contractions. Early diagnosis of AFib is a key step in the prevention of stroke and heart failure. In this paper, we present a comprehensive time-frequency pattern analysis approach for automated detection of AFib from smartphone-derived seismocardiography (SCG) and gyrocardiography (GCG) signals. We sought to assess the diagnostic performance of a smartphone mechanocardiogram (MCG) by considering joint SCG-GCG recordings from 435 subjects including 190 AFib and 245 sinus rhythm cases. A fully automated AFib detection algorithm consisting of various signal processing and multidisciplinary feature engineering techniques was developed and evaluated through a large set of cross-validation (CV) data including 300 (AFib = 150) cardiac patients. The trained model was further tested on an unseen set of recordings including 135 (AFib = 40) subjects considered as cross-database (CD). The experimental results showed accuracy, sensitivity, and specificity of approximately 97%, 99%, and 95% for the CV study and up to 95%, 93%, and 97% for the CD test, respectively. The F 1 scores were 97% and 96% for the CV and CD, respectively. A positive predictive value of approximately 95% and 92% was obtained, respectively, for the validation and test sets suggesting high reproducibility and repeatability for mobile AFib detection. Moreover, the kappa coefficient of the method was 0.94 indicating a near-perfect agreement in rhythm classification between the smartphone algorithm and visual interpretation of telemetry recordings. The results support the feasibility of self-monitoring via easy-to-use and accessible MCGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.