Acetylsalicylic acid (ASA), also known as aspirin, a classic, nonsteroidal, anti-inflammatory drug (NSAID), is widely used to relieve minor aches and pains and to reduce fever. Epidemiological studies and other experimental studies suggest that ASA use reduces the risk of different cancers including breast cancer (BC) and may be used as a chemopreventive agent against BC and other cancers. These studies have raised the tempting possibility that ASA could serve as a preventive medicine for BC. However, lack of in-depth knowledge of the mechanism of action of ASA reshapes the debate of risk and benefit of using ASA in prevention of BC. Our studies, using in vitro and in vivo tumor xenograft models, show a strong beneficial effect of ASA in the prevention of breast carcinogenesis. We find that ASA not only prevents breast tumor cell growth in vitro and tumor growth in nude mice xenograft model through the induction of apoptosis, but also significantly reduces the self-renewal capacity and growth of breast tumor-initiating cells (BTICs)/breast cancer stem cells (BCSCs) and delays the formation of a palpable tumor. Moreover, ASA regulates other pathophysiological events in breast carcinogenesis, such as reprogramming the mesenchymal to epithelial transition (MET) and delaying in vitro migration in BC cells. The tumor growth-inhibitory and reprogramming roles of ASA could be mediated through inhibition of TGF-β/ SMAD4 signaling pathway that is associated with growth, motility, invasion, and metastasis in advanced BCs. Collectively, ASA has a therapeutic or preventive potential by attacking possible target such as TGF-β in breast carcinogenesis.
BackgroundIn menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity.MethodsWe analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells.ResultsPresent studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways.ConclusionsThese studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.
The matricellular protein CCN5/WISP-2 represents a promising target in triple-negative breast cancer (TNBC) because treatment or induced activation of CCN5 in TNBC cells promotes cell growth arrest at the G0/G1 phase, reduces cell proliferation and delays tumor growth in the xenograft model. Our studies found that the p27(Kip1) tumor suppressor protein is upregulated and relocalized to the nucleus from cytoplasm by CCN5 in these cells and that these two events (upregulation and relocalization of p27(Kip1)) are critical for CCN5-induced growth inhibition of TNBC cells. In the absence of CCN5, p27(Kip1) resides mostly in the cytoplasm, which is associated with the aggressive nature of cancer cells. Mechanistically, CCN5 inhibits Skp2 expression, which seems to stabilize the p27(Kip1) protein in these cells. On the other hand, CCN5 also recruits FOXO3a to mediate the transcriptional regulation of p27(Kip1). The recruitment of FOXO3a is achieved by the induction of its expression and activity through shifting from cytoplasm to the nucleus. Our data indicate that CCN5 blocks PI3K/AKT signaling to dephosphorylate at S318, S253 and Thr32 in FOXO3a for nuclear relocalization and activation of FOXO3a. Moreover, inhibition of α6β1 receptors diminishes CCN5 action on p27(Kip1) in TNBC cells. Collectively, these data suggest that CCN5 effectively inhibits TNBC growth through the accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation, and thus, activation of CCN5 may have the therapeutic potential to kill TNBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.