The past decade has seen great advances in unraveling the biological basis of hereditary ataxias. Molecular studies of spinocerebellar ataxias (SCA) have extended our understanding of dominant ataxias. Causative genes have been identified for a few autosomal recessive ataxias: Friedreich's ataxia, ataxia with vitamin E deficiency, ataxia telangiectasia, recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1 (refs. 6,7) and type 2 (ref. 8). Nonetheless, genes remain unidentified for most recessive ataxias. Additionally, pure cerebellar ataxias, which represent up to 20% of all ataxias, remain poorly studied with only two causative dominant genes being described: CACNA1A (ref. 9) and SPTBN2 (ref. 10). Here, we report a newly discovered form of recessive ataxia in a French-Canadian cohort and show that SYNE1 mutations are causative in all of our kindreds, making SYNE1 the first identified gene responsible for a recessively inherited pure cerebellar ataxia.
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190 controls. Here, we report the identification of two putative causative mutations: one being a de novo deletion at an intronic donor splice site and one missense transmitted from an epileptic father. We were able to confirm the deleterious effect of the splice site deletion by RT-PCR using mRNA extracted from cultured lymphoblastoid cells. The missense mutation, a leucine to proline at amino acid position 68, is perfectly conserved across all species examined, and would be predicted to disrupt an alpha-helical domain. These results further support the role of SHANK3 gene disruption in the etiology of ASD.
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n = 142; 122 males and 20 females) or SCZ (n = 143; 95 males and 48 females). We identified > 200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).
Background SMPD1 (acid‐sphingomyelinase) variants have been associated with Parkinson's disease in recent studies. The objective of this study was to further investigate the role of SMPD1 mutations in PD. Methods SMPD1 was sequenced in 3 cohorts (Israel Ashkenazi Jewish cohort, Montreal/Montpellier, and New York), including 1592 PD patients and 975 controls. Additional data were available for 10,709 Ashkenazi Jewish controls. Acid‐sphingomyelinase activity was measured by a mass spectrometry‐based assay in the New York cohort. α‐Synuclein levels were measured in vitro following CRISPR/Cas9‐mediated knockout and siRNA knockdown of SMPD1 in HeLa and BE(2)‐M17 cells. Lysosomal localization of acid‐sphingomyelinase with different mutations was studied, and in silico analysis of their effect on acid‐sphingomyelinase structure was performed. Results SMPD1 mutations were associated with PD in the Ashkenazi Jewish cohort, as 1.4% of PD patients carried the p.L302P or p.fsP330 mutation, compared with 0.37% in 10,709 Ashkenazi Jewish controls (OR, 3.7; 95%CI, 1.6‐8.2; P = 0.0025). In the Montreal/Montpellier cohort, the p.A487V variant was nominally associated with PD (1.5% versus 0.14%; P = 0.0065, not significant after correction for multiple comparisons). Among PD patients, reduced acid‐sphingomyelinase activity was associated with a 3.5‐ to 5.8‐year earlier onset of PD in the lowest quartile versus the highest quartile of acid‐sphingomyelinase activity (P = 0.01‐0.001). We further demonstrated that SMPD1 knockout and knockdown resulted in increased α‐synuclein levels in HeLa and BE(2)‐M17 dopaminergic cells and that the p.L302P and p.fsP330 mutations impair the traffic of acid‐sphingomyelinase to the lysosome. Conclusions Our results support an association between SMPD1 variants, acid‐sphingomyelinase activity, and PD. Furthermore, they suggest that reduced acid‐sphingomyelinase activity may lead to α‐synuclein accumulation. © 2019 International Parkinson and Movement Disorder Society
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.