The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Whole genome DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of on-going abnormal mutational processes, consistent with field-effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissue or between different ERG-lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.
Background:A family history of prostate cancer (PrCa) is a strong risk factor for the disease, indicating that inherited factors are important in this disease. We previously estimated that about 2% of PrCa cases diagnosed ⩽55 years harbour a BRCA2 mutation and PrCa among BRCA2 carriers has been shown to be more aggressive, with poorer survival.Methods:To further evaluate the role of BRCA2 in PrCa predisposition, we screened 1864 men with PrCa aged between 36 and 88 years. We analysed the BRCA2 gene using a novel high-throughput multiplex fluorescence heteroduplex detection system developed for the ABI3130xl genetic analyzer.Results:We identified 19 protein-truncating mutations, 3 in-frame deletions and 69 missense variants of uncertain significance (UV) in our sample set. All the carriers of truncating mutations developed PrCa at ⩽65 years, with a prevalence of BRCA2 mutation of 1.20% for cases in this age group.Conclusion:Based on the estimated frequency of BRCA2 mutations in the United Kingdom we estimate that germline mutations in the BRCA2 gene confer an ∼8.6-fold increased risk of PrCa by age 65, corresponding to an absolute risk of ∼15% by age 65. These results suggest that routine testing of early onset PrCa cases for germline BRCA2 mutations will further help to refine the prevalence and risk associated with BRCA2 mutations and may be useful for guiding management options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.