Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.
To determine the importance of suppressor of cytokine signaling-3 (SOCS3) in the regulation of hematopoietic growth factor signaling generally, and of G-CSF-induced cellular responses specifically, we created mice in which the Socs3 gene was deleted in all hematopoietic cells. Although normal until young adulthood, these mice then developed neutrophilia and a spectrum of inflammatory pathologies. When stimulated with G-CSF in vitro, SOCS3-deficient cells of the neutrophilic granulocyte lineage exhibited prolonged STAT3 activation and enhanced cellular responses to G-CSF, including an increase in cloning frequency, survival, and proliferative capacity. Consistent with the in vitro findings, mutant mice injected with G-CSF displayed enhanced neutrophilia, progenitor cell mobilization, and splenomegaly, but unexpectedly also developed inflammatory neutrophil infiltration into multiple tissues and consequent hind-leg paresis. We conclude that SOCS3 is a key negative regulator of G-CSF signaling in myeloid cells and that this is of particular significance during G-CSF-driven emergency granulopoiesis.
Although the transcription factor PU.1 is essential for fetal lymphomyelopoiesis, we unexpectedly found that elimination of the gene in adult mice allowed disturbed hematopoiesis, dominated by granulocyte production. Impaired production of lymphocytes was evident in PU.1-deficient bone marrow (BM), but myelocytes and clonogenic granulocytic progenitors that are responsive to granulocyte colony-stimulating factor or interleukin-3 increased dramatically. No identifiable common lymphoid or myeloid progenitor populations were discernable by flow cytometry; however, clonogenic assays suggested an overall increased frequency of blast colony-forming cells and BM chimeras revealed existence of long-term self-renewing PU.1-deficient cells that required PU.1 for lymphoid, but not granulocyte, generation. PU.1 deletion in granulocyte-macrophage progenitors, but not in common myeloid progenitors, resulted in excess granulocyte production; this suggested specific roles of PU.1 at different stages of myeloid development. These findings emphasize the distinct nature of adult hematopoiesis and reveal that PU.1 regulates the specification of the multipotent lymphoid and myeloid compartments and restrains, rather than promotes, granulopoiesis.
Genetic screens in lower organisms, particularly those that identify modifiers of preexisting genetic defects, have been used successfully to order components of complex signaling pathways. To date, similar suppressor screens have not been used in vertebrates. To define the molecular pathways regulating platelet production, we have executed a large-scale modifier screen with genetically thrombocytopenic Mpl ؊/؊ mice by using N-ethyl-N-nitrosourea mutagenesis. Here we show that mutations in the c-Myb gene cause a myeloproliferative syndrome and supraphysiological expansion of megakaryocyte and platelet production in the absence of thrombopoietin signaling. This screen demonstrates the utility of large-scale N-ethyl-N-nitrosourea mutagenesis suppressor screens in mice for the simultaneous discovery and in vivo validation of targets for therapeutic discovery in diseases for which mouse models are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.