Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera(1) and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium(2), and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
SignificanceFixed nitrogen is essential for plant growth. Some plants, such as legumes, can host nitrogen-fixing bacteria within cells in root organs called nodules. Nodules are considered to have evolved in parallel in different lineages, but the genetic changes underlying this evolution remain unknown. Based on gene expression in the nitrogen-fixing nonlegume Parasponia andersonii and the legume Medicago truncatula, we find that nodules in these different lineages may share a single origin. Comparison of the genomes of Parasponia with those of related nonnodulating plants reveals evidence of parallel loss of genes that, in legumes, are essential for nodulation. Taken together, this raises the possibility that nodulation originated only once and was subsequently lost in many descendant lineages.
SUMMARYWe explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species-and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.
We have implemented in Python the COmparative GENomic Toolkit, a fully integrated and thoroughly tested framework for novel probabilistic analyses of biological sequences, devising workflows, and generating publication quality graphics. PyCogent includes connectors to remote databases, built-in generalized probabilistic techniques for working with biological sequences, and controllers for third-party applications. The toolkit takes advantage of parallel architectures and runs on a range of hardware and operating systems, and is available under the general public license from http://sourceforge.net/projects/pycogent. RationaleThe genetic divergence of species is affected by both DNA metabolic processes and natural selection. Processes contributing to genetic variation that are undetectable with intraspecific data may be detectable by inter-specific analyses because of the accumulation of signal over evolutionary time scales. As a consequence of the greater statistical power, there is interest in applying comparative analyses to address an increasing number and diversity of problems, in particular analyses that integrate sequence and phenotype. Significant barriers that hinder the extension of comparative analyses to exploit genome indexed phenotypic data include the narrow focus of most analytical tools, and the diverse array of data sources, formats, and tools available. Theoretically coherent integrative analyses can be conducted by combining probabilistic models of different aspects of genotype. Probabilistic models of sequence change underlie many core bioinformatics tasks, including similarity search, sequence alignment, phylogenetic inference, and ancestral state reconstruction. Probabilistic models allow usage of likelihood inference, a powerful approach from statistics, to establish the significance of differences in support of competing hypotheses. Linking different analyses through a shared and explicit probabilistic model of sequence change is thus extremely valuable, and provides a basis for generalizing analyses to more complex models of evolution (for example, to incorporate dependence between sites). Numerous studies have established how biological factors representing metabolic or selective influences can be represented in substitution models as specific parameters that affect rates of interchange between sequence motifs or the spatial occurrence of such rates [1][2][3][4]. Given this solid grounding, it is desirable to have a toolkit that allows flexible parameterization of probabilistic models and interchange of appropriate modules.There are many existing software packages that can manipulate biological sequences and structures, but few allow specification of both truly novel statistical models and detailed workflow control for genome scale datasets. Traditional phylogenetic analysis applications [5,6] typically provide a number of explicitly defined statistical models that are difficult to modify. One exception in which the parameterization of entirely novel substitution models was poss...
Background Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle.ResultsWe applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster.ConclusionsThe expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3852-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.