Intracerebral hemorrhage (ICH) is a critical disease, highly associated with mortality and morbidity. Several studies have demonstrated the beneficial effect of mesenchymal stem cells (MSCs) on ICH, mostly focused on their mid-to-long-term effect. Acute hematoma expansion is one of the most important prognostic factors of ICH. We hypothesized that MSCs would decrease mortality and hematoma size in acute ICH, based on the findings of a few recent researches reporting their effect on blood-brain barrier and endothelial integrity. Rat ICH models were made using bacterial collagenase. One hour after ICH induction, the rats were randomly divided into MSC-treated and control groups. Mortality, hematoma volume, ventricular enlargement, brain edema, and degenerating neuron count were compared at 24 hours after ICH induction. Expression of tight junction proteins (ZO-1, occludin) and coagulation factor VII mRNA was also compared. Mortality rate (50% versus 8.3%), hematoma size, ventricular size, hemispheric enlargement, and degenerating neuron count were significantly lower in the MSC-treated group (p = 0.034, 0.038, 0.001, 0.022, and <0.001, resp.), while the expression of ZO-1 and occludin was higher (p = 0.007 and 0.012). Administration of MSCs may prevent hematoma expansion in the hyperacute stage of ICH and decrease acute mortality by enhancing the endothelial integrity of cerebral vasculature.
Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30 μM and 100 μM of ZnCl2. Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.
Chemotherapy-induced cognitive impairment (CICI) is increasingly recognized as a major unwanted side effect of an otherwise highly valuable life-saving technology. In part, this awareness is a result of increased cancer survival rates following chemotherapy. Altered hippocampal neurogenesis may play a role in mediating CICI. In particular, zinc could act as a key regulator of this process. To test this hypothesis, we administered paclitaxel (Px) to male C57BL/6 mice for set time periods and then evaluated the effects of Px treatment on hippocampal neurogenesis and vesicular zinc. We found that vesicular zinc levels and expression of zinc transporter 3 (ZnT3) were reduced in Px-treated mice, compared to vehicle-treated mice. Moreover, Px-treated mice demonstrated a significant decrease in the number of neuroblasts present. However, no difference in the number of progenitor cells were observed. In addition, zinc supplementation by treatment with ZnCl2 ameliorated the Px-induced decrease in hippocampal neurogenesis and cognitive impairment. These results suggest that via disruption of vesicular zinc stores in hippocampal mossy fiber terminals, chemotherapy may impinge upon one or more of the sequential stages involved in the maturation of new neurons derived via adult neurogenesis and thereby leads to the progressive cognitive decline associated with CICI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.