We first investigate spectral properties of the Neumann-Poincaré (NP) operator for the Lamé system of elasto-statics. We show that the elasto-static NP operator can be symmetrized in the same way as that for Laplace operator. We then show that even if elasto-static NP operator is not compact even on smooth domains, its spectrum consists of eigenvalues which accumulates to two numbers determined by Lamé constants. We then derive explicitly eigenvalues and eigenfunctions on disks and ellipses. We then investigate resonance occurring at eigenvalues and anomalous localized resonance at accumulation points of eigenvalues. We show on ellipses that cloaking by anomalous localized resonance takes place at accumulation points of eigenvalues.
International audienceWith each domain, an infinite number of tensors, called the Generalized Polarization Tensors (GPTs), is associated. The GPTs contain significant information on the shape of the domain. In the recent paper (Ammari et al. in Math. Comput. 81, 367–386, 2012), a recursive optimal control scheme to recover fine shape details of a given domain using GPTs is proposed. In this paper, we show that the GPTs can be used for shape description. We also show that high-frequency oscillations of the boundary of a domain are only contained in its high-order GPTs. Indeed, we provide an original stability and resolution analysis for the reconstruction of small shape changes from the GPTs. By developing a level set version of the recursive optimization scheme, we make the change of topology possible and show that the GPTs can capture the topology of the domain. We also propose an indicator of topology which could be used in some particular cases to test whether we have the correct number of connected components in the reconstructed image. We provide analytical and numerical evidence that GPTs can capture topology and high-frequency shape oscillations. The results of this paper clearly show that the concept of GPTs is a very promising new tool for shape description
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.