The Virus Pathogen Database and Analysis Resource (ViPR, www.ViPRbrc.org) is an integrated repository of data and analysis tools for multiple virus families, supported by the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers (BRC) program. ViPR contains information for human pathogenic viruses belonging to the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Flaviviridae, Filoviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Rhabdoviridae and Togaviridae families, with plans to support additional virus families in the future. ViPR captures various types of information, including sequence records, gene and protein annotations, 3D protein structures, immune epitope locations, clinical and surveillance metadata and novel data derived from comparative genomics analysis. Analytical and visualization tools for metadata-driven statistical sequence analysis, multiple sequence alignment, phylogenetic tree construction, BLAST comparison and sequence variation determination are also provided. Data filtering and analysis workflows can be combined and the results saved in personal ‘Workbenches’ for future use. ViPR tools and data are available without charge as a service to the virology research community to help facilitate the development of diagnostics, prophylactics and therapeutics for priority pathogens and other viruses.
Please cite this paper as: Squires et al. (2012) Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and Other Respiratory Viruses 6(6), 404–416.BackgroundThe recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics.DesignThe Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected ‘workbench’ spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature.ResultsTo demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks.ConclusionsThe IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics.
The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics and therapeutics against influenza virus by providing a comprehensive collection of influenza-related data integrated from various sources, a growing suite of analysis and visualization tools for data mining and hypothesis generation, personal workbench spaces for data storage and sharing, and active user community support. Here, we describe the recent improvements in IRD including the use of cloud and high performance computing resources, analysis and visualization of user-provided sequence data with associated metadata, predictions of novel variant proteins, annotations of phenotype-associated sequence markers and their predicted phenotypic effects, hemagglutinin (HA) clade classifications, an automated tool for HA subtype numbering conversion, linkouts to disease event data and the addition of host factor and antiviral drug components. All data and tools are freely available without restriction from the IRD website at https://www.fludb.org.
Progress in understanding tumor stromal biology has been constrained in part because cancer-associated fibroblasts (CAF) are a heterogeneous population with limited cell-type-specific protein markers. Using RNA expression profiling, we identified the membrane protein leucine-rich repeat containing 15 (LRRC15) as highly expressed in multiple solid tumor indications with limited normal tissue expression. LRRC15 was expressed on stromal fibroblasts in many solid tumors (e.g., breast, head and neck, lung, pancreatic) as well as directly on a subset of cancer cells of mesenchymal origin (e.g., sarcoma, melanoma, glioblastoma). LRRC15 expression was induced by TGFβ on activated fibroblasts (αSMA) and on mesenchymal stem cells. These collective findings suggested LRRC15 as a novel CAF and mesenchymal marker with utility as a therapeutic target for the treatment of cancers with LRRC15-positive stromal desmoplasia or cancers of mesenchymal origin. ABBV-085 is a monomethyl auristatin E (MMAE)-containing antibody-drug conjugate (ADC) directed against LRRC15, and it demonstrated robust preclinical efficacy against LRRC15 stromal-positive/cancer-negative, and LRRC15 cancer-positive models as a monotherapy, or in combination with standard-of-care therapies. ABBV-085's unique mechanism of action relied upon the cell-permeable properties of MMAE to preferentially kill cancer cells over LRRC15-positive CAF while also increasing immune infiltrate (e.g., F4/80 macrophages) in the tumor microenvironment. In summary, these findings validate LRRC15 as a novel therapeutic target in multiple solid tumor indications and support the ongoing clinical development of the LRRC15-targeted ADC ABBV-085. These findings identify LRRC15 as a new marker of cancer-associated fibroblasts and cancers of mesenchymal origin and provide preclinical evidence for the efficacy of an antibody-drug conjugate targeting the tumor stroma. .
Several viruses within the Coronaviridae family have been categorized as either emerging or re-emerging human pathogens, with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) being the most well known. The NIAID-sponsored Virus Pathogen Database and Analysis Resource (ViPR, ) supports bioinformatics workflows for a broad range of human virus pathogens and other related viruses, including the entire Coronaviridae family. ViPR provides access to sequence records, gene and protein annotations, immune epitopes, 3D structures, host factor data, and other data types through an intuitive web-based search interface. Records returned from these queries can then be subjected to web-based analyses including: multiple sequence alignment, phylogenetic inference, sequence variation determination, BLAST comparison, and metadata-driven comparative genomics statistical analysis. Additional tools exist to display multiple sequence alignments, view phylogenetic trees, visualize 3D protein structures, transfer existing reference genome annotations to new genomes, and store or share results from any search or analysis within personal private ‘Workbench’ spaces for future access. All of the data and integrated analysis and visualization tools in ViPR are made available without charge as a service to the Coronaviridae research community to facilitate the research and development of diagnostics, prophylactics, vaccines and therapeutics against these human pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.