Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.Genome-wide association (GWA) studies have been successful in identifying genetic loci associated with complex diseases and traits. Due to the design of genotyping arrays, most of the associated variants have been common in population samples. While thousands of loci have been associated with complex diseases and traits, they so far typically explain only a fraction of the heritability 1 .It has now become possible to search for associations with variants that are less frequent than in previous GWA studies by the analysis of large numbers of samples using whole genome or exome sequencing approaches. However, costs have so far limited the possibility for sequencing of tens of thousands of samples likely needed to detect significant associations for low-frequency variants.Stochastic imputation to individuals genotyped using genotyping arrays in large enough samples offers an alternative and cost-effective design to study associations of lowfrequency and rare variants at a genome-wide level. GWA studies of circulating lipids have been highly successful in identifying loci with common variants with small effects 2,3 . In
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications.
The molecular pathways that drive cancer progression and treatment resistance are highly redundant and variable between individual patients with the same cancer type. To tackle this complex rewiring of pathway cross-talk, personalized combination treatments targeting multiple cancer growth and survival pathways are required. Here we implemented a computational-experimental drug combination prediction and testing (DCPT) platform for efficient prioritization and testing in patient-derived samples to identify customized synergistic combinations for individual cancer patients. DCPT used drug-target interaction networks to traverse the massive combinatorial search spaces among 218 compounds (a total of 23,653 pairwise combinations) and identified cancer-selective synergies by using differential single-compound sensitivity profiles between patient cells and healthy controls, hence reducing the likelihood of toxic combination effects. A polypharmacology-based machine learning modeling and network visualization made use of baseline genomic and molecular profiles to guide patient-specific combination testing and clinical translation phases. Using T-cell prolymphocytic leukemia (T-PLL) as a first case study, we show how the DCPT platform successfully predicted distinct synergistic combinations for each of the three T-PLL patients, each presenting with different resistance patterns and synergy mechanisms. In total, 10 of 24 (42%) of selective combination predictions were experimentally confirmed to show synergy in patient-derived samples The identified selective synergies among approved drugs, including tacrolimus and temsirolimus combined with BCL-2 inhibitor venetoclax, may offer novel drug repurposing opportunities for treating T-PLL. An integrated use of functional drug screening combined with genomic and molecular profiling enables patient-customized prediction and testing of drug combination synergies for T-PLL patients. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.