bInorganic polyphosphate (polyP), a linear polymer of hundreds of phosphate residues linked by ATP-like phosphoanhydride bonds, is found in all organisms and performs a wide variety of functions. This study shows that polyP accumulation occurs in Mycobacterium tuberculosis upon exposure to various stress conditions. M. tuberculosis possesses a single homolog of ppk-1, and we have disrupted ppk-1 in the M. tuberculosis genome by allelic replacement. The mutant strain exhibited negligible levels of intracellular polyP, decreased expression of sigF and phoP, and reduced growth in the stationary phase and displayed a survival defect in response to nitrosative stress and in THP-1 macrophages compared to the wild-type strain. We report that reduction in polyP levels is associated with increased susceptibility of M. tuberculosis to certain TB drugs and impairs its ability to cause disease in guinea pigs. These results suggest that polyP contributes to persistence of M. tuberculosis in vitro and plays an important role in the physiology of bacteria residing within guinea pigs.
Toxin-antitoxin (TA) systems are highly conserved in members of the Mycobacterium tuberculosis (Mtb) complex and have been proposed to play an important role in physiology and virulence. Nine of these TA systems belong to the mazEF family, encoding the intracellular MazF toxin and its antitoxin, MazE. By overexpressing each of the nine putative MazF homologues in Mycobacterium bovis BCG, here we show that Rv1102c (MazF3), Rv1991c (MazF6) and Rv2801c (MazF9) induce bacteriostasis. The construction of various single-, double-and triple-mutant Mtb strains reveals that these MazF ribonucleases contribute synergistically to the ability of Mtb to adapt to conditions such as oxidative stress, nutrient depletion and drug exposure. Moreover, guinea pigs infected with the triple-mutant strain exhibits significantly reduced bacterial loads and pathological damage in infected tissues in comparison with parental strain-infected guinea pigs. The present study highlights the importance of MazF ribonucleases in Mtb stress adaptation, drug tolerance and virulence.
Toxin-antitoxin (TA) systems are bicistronic genetic modules that are ubiquitously present in bacterial genomes. The Mycobacterium tuberculosis genome encodes 90 putative TA systems, and these are considered to be associated with maintenance of bacterial genomic stability or bacterial survival under unfavorable environmental conditions. The majority of these in M. tuberculosis have been annotated as belonging to the virulence-associated protein B and C (VapBC) family. However, their precise role in bacterial physiology has not been elucidated. Here, we functionally characterized VapC toxins from M. tuberculosis and show that overexpression of some homologs inhibits growth of Mycobacterium bovis bacillus Calmette-Guérin in a bacteriostatic manner. Expression profiling of messenger RNA revealed that these VapC toxins were differentially induced upon exposure of M. tuberculosis to stress conditions. We also unraveled that transcriptional cross-activation exists between TA systems in M. tuberculosis. This study provides the first evidence for the essentiality of VapBC3 and VapBC4 systems in M. tuberculosis virulence.
Inorganic polyphosphate (PolyP) plays an essential role in microbial stress adaptation, virulence and drug tolerance. The genome of Mycobacterium tuberculosis encodes for two polyphosphate kinases (PPK-1, Rv2984 and PPK-2, Rv3232c) and polyphosphatases (ppx-1, Rv0496 and ppx-2, Rv1026) for maintenance of intracellular PolyP levels. Microbial polyphosphate kinases constitute a molecular mechanism, whereby microorganisms utilize PolyP as phosphate donor for synthesis of ATP. In the present study we have constructed ppk-2 mutant strain of M. tuberculosis and demonstrate that PPK-2 enzyme contributes to its ability to cause disease in guinea pigs. We observed that ppk-2 mutant strain infected guinea pigs had significantly reduced bacterial loads and tissue pathology in comparison to wild type infected guinea pigs at later stages of infection. We also report that in comparison to the wild type strain, ppk-2 mutant strain was more tolerant to isoniazid and impaired for survival in THP-1 macrophages. In the present study we have standardized a luciferase based assay system to identify chemical scaffolds that are non-cytotoxic and inhibit M. tuberculosis PPK-2 enzyme. To the best of our knowledge this is the first study demonstrating feasibility of high throughput screening to obtain small molecule PPK-2 inhibitors.
Toxin–antitoxin (TA) systems are involved in diverse physiological processes in prokaryotes, but their exact role in Mycobacterium tuberculosis (Mtb) virulence and in vivo stress adaptation has not been extensively studied. Here, we demonstrate that the VapBC11 TA module is essential for Mtb to establish infection in guinea pigs. RNA-sequencing revealed that overexpression of VapC11 toxin results in metabolic slowdown, suggesting that modulation of the growth rate is an essential strategy for in vivo survival. Interestingly, overexpression of VapC11 resulted in the upregulation of chromosomal TA genes, suggesting the existence of highly coordinated crosstalk among TA systems. In this study, we also present the crystal structure of the VapBC11 heterooctameric complex at 1.67 Å resolution. Binding kinetic studies suggest that the binding affinities of toxin–substrate and toxin–antitoxin interactions are comparable. We used a combination of structural studies, molecular docking, mutational analysis and in vitro ribonuclease assays to enhance our understanding of the mode of substrate recognition by the VapC11 toxin. Furthermore, we have also designed peptide-based inhibitors to target VapC11 ribonuclease activity. Taken together, we propose that the structure-guided design of inhibitors against in vivo essential ribonucleases might be a novel strategy to hasten clearance of intracellular Mtb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.