Background Pregnant and lactating women were excluded from initial COVID-19 vaccine trials; thus, data to guide vaccine decision-making are lacking. Objectives To evaluate the immunogenicity and reactogenicity of COVID-19 mRNA vaccination in pregnant and lactating women compared to: (1) non-pregnant controls and (2) natural COVID-19 infection in pregnancy. Study Design 131 reproductive-age vaccine recipients (84 pregnant, 31 lactating, and 16 non-pregnant) were enrolled in a prospective cohort study at two academic medical centers. Titers of SARS-CoV-2 Spike and RBD IgG, IgA and IgM were quantified in participant sera (N=131) and breastmilk (N=31) at baseline, second vaccine dose, 2-6 weeks post second vaccine, and at delivery by Luminex. Umbilical cord sera (N=10) titers were assessed at delivery. Titers were compared to those of pregnant women 4-12 weeks from natural infection (N=37) by ELISA. A pseudovirus neutralization assay was used to quantify neutralizing antibody titers for the subset of women who delivered during the study period. Post-vaccination symptoms were assessed via questionnaire. Kruskal-Wallis tests and a mixed effects model, with correction for multiple comparisons, were used to assess differences between groups. Results Vaccine-induced antibody titers were equivalent in pregnant and lactating compared to non-pregnant women (median [IQR] 5.59 [4.68-5.89] pregnant, 5.74 [5.06-6.22] lactating, 5.62 [4.77-5.98] non-pregnant, p = 0.24). All titers were significantly higher than those induced by SARS-CoV-2 infection during pregnancy (p < 0.0001). Vaccine-generated antibodies were present in all umbilical cord blood and breastmilk samples. Neutralizing antibody titers were lower in umbilical cord compared to maternal sera, although this finding did not achieve statistical significance (median [IQR] 104.7 [61.2-188.2] maternal sera, 52.3 [11.7-69.6] cord sera, p=0.05). The second vaccine dose (boost dose) increased SARS-CoV-2-specific IgG, but not IgA, in maternal blood and breastmilk. No differences were noted in reactogenicity across the groups. Conclusions COVID-19 mRNA vaccines generated robust humoral immunity in pregnant and lactating women, with immunogenicity and reactogenicity similar to that observed in non-pregnant women. Vaccine-induced immune responses were significantly greater than the response to natural infection. Immune transfer to neonates occurred via placenta and breastmilk.
Background: Pregnant and lactating women were excluded from initial COVID-19 vaccine trials; thus, data to guide vaccine decision-making are lacking. We sought to evaluate the immunogenicity and reactogenicity of COVID-19 mRNA vaccination in pregnant and lactating women. Methods: 131 reproductive-age vaccine recipients (84 pregnant, 31 lactating, and 16 non-pregnant) were enrolled in a prospective cohort study at two academic medical centers. Titers of SARS-CoV-2 Spike and RBD IgG, IgA and IgM were quantified in participant sera (N=131), umbilical cord sera (N=10), and breastmilk (N=31) at baseline, 2nd vaccine dose, 2-6 weeks post 2nd vaccine, and delivery by Luminex, and confirmed by ELISA. Titers were compared to pregnant women 4-12 weeks from native infection (N=37). Post-vaccination symptoms were assessed. Kruskal-Wallis tests and a mixed effects model, with correction for multiple comparisons, were used to assess differences between groups. Results: Vaccine-induced immune responses were equivalent in pregnant and lactating vs non-pregnant women. All titers were higher than those induced by SARS-CoV-2 infection during pregnancy. Vaccine-generated antibodies were present in all umbilical cord blood and breastmilk samples. SARS-CoV-2 specific IgG, but not IgA, increased in maternal blood and breastmilk with vaccine boost. No differences were noted in reactogenicity across the groups. Conclusions: COVID-19 mRNA vaccines generated robust humoral immunity in pregnant and lactating women, with immunogenicity and reactogenicity similar to that observed in non-pregnant women. Vaccine-induced immune responses were significantly greater than the response to natural infection. Immune transfer to neonates occurred via placental and breastmilk.
Maternal SARS-CoV-2 infection drives sexually dimorphic placental immune responses and reduces SARS-CoV-2–specific antibody transfer to male fetuses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.