Advanced materials are needed to meet the requirements of devices designed for harvesting and storing renewable electricity. In particular, polymer electrolyte membrane water electrolyzers (PEMWEs) could benefit from a reduction in the size of the iridium oxide (IrOx) particles used to electrocatalyze the sluggish oxygen evolution reaction (OER). To verify the validity of this approach, we built a library of 18 supported and unsupported IrOx catalysts and established their stability number (S-number) values using inductively-coupled plasma mass spectrometry and electrochemistry. Our results provide quantitative evidence that (i) supported IrOx nanocatalysts are more active towards the OER but less stable than unsupported micrometer-sized catalysts, e.g. commercial IrO2 or porous IrOx microparticles; (ii) tantalum-doped tin oxides (TaTO) used as supports for IrOx nanoparticles are more stable than antimony-doped tin oxides (ATO) and carbon black (Vulcan XC72); (iii) thermal annealing under air atmosphere yields depreciated OER activity but enhanced stability; (iv) the beneficial effect of thermal annealing holds both for microand nano-IrOx particles, and leads to one order of magnitude lower Ir atom dissolution rate with respect to non-annealed catalysts; (v) the best compromise between OER activity and stability was obtained for unsupported porous IrOx microparticles after thermal annealing under air at 450°C. These insights provide guidance on which material classes and strategies are the most likely to increase sustainably the OER efficiency while contributing to diminish the cost of PEMWE devices.
The use of Pt-based cathode catalyst materials hinders the widespread application of anion exchange membrane fuel cells (AEMFCs). Herein, we present a non-precious metal catalyst (NPMC) material based on pyrolysed Fe and Co co-doped electrospun carbon nanofibres (CNFs). The prepared materials are studied as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts in alkaline and acidic environments. High activity towards the ORR in alkaline solution indicated the suitability of the prepared NPMCs for the application at the AEMFC cathode. In the AEMFC test, the membrane-electrode assembly bearing a cathode with the nanofibre-based catalyst prepared with the ionic liquid (IL) (Fe/Co/IL-CNF-800b) showed the maximum power density (Pmax) of 195 mW cm −2 , which is 78 % of the Pmax obtained with a commercial Pt/C cathode catalyst. Such high ORR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.