(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe human infections and dromedary camels are considered an intermediary host. The dynamics of natural infection in camels are not well understood. Through systematic surveillance in Egypt, nasal, rectal, milk, urine and serum samples were collected from camels between June 2014 and February 2016. Locations included quarantines, markets, abattoirs, free-roaming herds and farmed breeding herds. The overall seroprevalence was 71% and RNA detection rate was 15%. Imported camels had higher seroprevalence (90% vs 61%) and higher RT-PCR detection rates (21% vs 12%) than locally raised camels. Juveniles had lower seroprevalence than adults (37% vs 82%) but similar RT-PCR detection rates (16% vs 15%). An outbreak in a breeding herd, showed that antibodies rapidly wane, that camels become re-infected, and that outbreaks in a herd are sustained for an extended time. Maternal antibodies titers were very low in calves regardless of the antibody titers of the mothers. Our results support the hypothesis that camels are a reservoir for MERS-CoV and that camel trade is an important route of introducing the virus into importing countries. Findings related to waning antibodies and re-infection have implications for camel vaccine development, disease management and zoonotic threat.
Recently, two genetically distinct influenza viruses were detected in bats in Guatemala and Peru. We conducted influenza A virus surveillance among four bat species in Egypt. Out of 1,202 swab specimens, 105 were positive by real-time PCR. A virus was successfully isolated in eggs and propagated in MDCK cells in the presence of N-tosyl-L-phenylalanine chloromethyl ketone-treated trypsin. Genomic analysis revealed that the virus was phylogenetically distinct from all other influenza A viruses. Analysis of the hemagglutinin gene suggested a common ancestry with other H9 viruses, and the virus showed a low level of cross-reactivity with serum raised against H9N2 viruses. Bats were seropositive for the isolated viruses. The virus replicated in the lungs of experimentally infected mice. While it is genetically distinct, this virus shares several avian influenza virus characteristics suggesting a more recent avian host origin. IMPORTANCE Through surveillance, we isolated and characterized an influenza A virus from Egyptian fruit bats. This virus had an affinity to avian-like receptors but was also able to infect mice. Our findings indicate that bats may harbor a diversity of influenza A viruses. Such viruses may have the potential to cross the species barrier to infect other species, including domestic birds, mammals, and, possibly, humans.
Dromedary camels are natural host of the Middle East respiratory syndrome coronavirus (MERS-CoV). However, there are limited studies of MERS-CoV infection of other domestic mammals exposed to infected dromedaries. We expanded our surveillance among camels in Egypt, Tunisia, and Senegal to include other domestic mammalian species in contact with infected camels. A total of 820 sera and 823 nasal swabs from cattle, sheep, goats, donkeys, buffaloes, mules, and horses were collected. Swabs were tested using RT-PCR and virus RNA-positive samples were genetically sequenced and phylogenetically analysed. Sera were screened using virus microneutralization tests and positive sera (where available) were confirmed using plaque reduction neutralization tests (PRNT). We detected 90% PRNT confirmed MERS-CoV antibody in 35 (55.6%) of 63 sera from sheep collected from Senegal, two sheep (1.8%) of 114 in Tunisia and a goat (0.9%) of 107 in Egypt, with titres ranging from 1:80 to ≥1:320. We detected MERS-CoV RNA in swabs from three sheep (1.2%) of 254 and five goats (4.1%) of 121 from Egypt and Senegal, as well as one cow (1.9%) of 53 and three donkeys (7.1%) of 42 from Egypt. Partial sequences of the RT-PCR amplicons confirmed specificity of the results. This study showed that domestic livestock in contact with MERS-CoV infected camels may be at risk of infection. We recommend expanding current MERS-CoV surveillance in animals to include other livestock in close contact with dromedary camels. The segregation of camels from other livestock in farms and live animal markets may need to be considered.
: Dromedary camels are the natural reservoirs of the Middle East respiratory syndrome coronavirus (MERS-CoV). Camels are mostly bred in East African countries then exported into Africa and Middle East for consumption. To understand the distribution of MERS-CoV among camels in North Africa and the Middle East, we conducted surveillance in Egypt, Senegal, Tunisia, Uganda, Jordan, Saudi Arabia, and Iraq. We also performed longitudinal studies of three camel herds in Egypt and Jordan to elucidate MERS-CoV infection and transmission. Between 2016 and 2018, a total of 4027 nasal swabs and 3267 serum samples were collected from all countries. Real- time PCR revealed that MERS-CoV RNA was detected in nasal swab samples from Egypt, Senegal, Tunisia, and Saudi Arabia. Microneutralization assay showed that antibodies were detected in all countries. Positive PCR samples were partially sequenced, and a phylogenetic tree was built. The tree suggested that all sequences are of clade C and sequences from camels in Egypt formed a separate group from previously published sequences. Longitudinal studies showed high seroprevalence in adult camels. These results indicate the widespread distribution of the virus in camels. A systematic active surveillance and longitudinal studies for MERS-CoV are needed to understand the epidemiology of the disease and dynamics of viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.