Dendritic cells (DCs), unique antigen-presenting cells (APCs) with potent T cell stimulatory capacity, direct the activation and differentiation of T cells by providing costimulatory signals. As such, they are critical regulators of both natural and vaccine-induced immune responses. A new B7 family member, B7-DC, whose expression is highly restricted to DCs, was identified among a library of genes differentially expressed between DCs and activated macrophages. B7-DC fails to bind the B7.1/2 receptors CD28 and cytotoxic T lymphocyte–associated antigen (CTLA)-4, but does bind PD-1, a receptor for B7-H1/PD-L1. B7-DC costimulates T cell proliferation more efficiently than B7.1 and induces a distinct pattern of lymphokine secretion. In particular, B7-DC strongly costimulates interferon γ but not interleukin (IL)-4 or IL-10 production from isolated naive T cells. These properties of B7-DC may account for some of the unique activity of DCs, such as their ability to initiate potent T helper cell type 1 responses.
Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NFkB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.
A B S T R A C T PurposeTo investigate the prognostic value of the BRAF V600E mutation and the recently identified TERT promoter mutation chr5:1,295,228CϾT (C228T), individually and in their coexistence, in papillary thyroid cancer (PTC). Patients and MethodsWe performed a retrospective study of the relationship of BRAF and TERT C228T mutations with clinicopathologic outcomes of PTC in 507 patients (365 women and 142 men) age 45.9 Ϯ 14.0 years (mean Ϯ SD) with a median follow-up of 24 months (interquartile range, 8 to 78 months). ResultsCoexisting BRAF V600E and TERT C228T mutations were more commonly associated with high-risk clinicopathologic characteristics of PTC than they were individually. Tumor recurrence rates were 25.8% (50 of (HR, 8.51; 95% CI, 4.84 to 14.97), which remained significant after clinicopathologic cofactor adjustments. Diseasefree patient survival curves displayed a moderate decline with BRAF V600E or TERT C228T alone but a sharp decline with two coexisting mutations. ConclusionCoexisting BRAF V600E and TERT C228T mutations form a novel genetic background that defines PTC with the worst clinicopathologic outcomes, providing unique prognostic and therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.