The kidney proximal tubule is the primary site for solute reabsorption, secretion and where kidney diseases can originate, including drug-induced toxicity. Two-dimensional cell culture systems of the human proximal tubule cells (hPTCs) are often used to study these processes. However, these systems fail to model the interplay between filtrate flow, fluid shear stress (FSS), and functionality essential for understanding renal diseases and drug toxicity. The impact of FSS exposure on gene expression and effects of FSS at differing rates on gene expression in hPTCs has not been thoroughly investigated. Here, we performed RNA-sequencing of human RPTEC/TERT1 cells in a microfluidic chip-based 3D model to determine transcriptomic changes. We measured transcriptional changes following treatment of cells in this device at three different fluidic shear stress. We observed that FSS changes the expression of PTC-specific genes and impacted genes previously associated with renal diseases in genome-wide association studies (GWAS). At a physiological FSS level, we observed cell morphology, enhanced polarization, presence of cilia, and transport functions using albumin reabsorption via endocytosis and efflux transport. Here, we present a dynamic view of hPTCs response to FSS with increasing fluidic shear stress conditions and provide insight into hPTCs cellular function under biologically relevant conditions.
Service Email Alerting click here. top right corner of the article or Receive free email alerts when new articles cite this article-sign up in the box at the http://genome.cshlp.org/subscriptions
The multifaceted roles of metabolism in invasion have been investigated across many cancers. The brain tumor glioblastoma (GBM) is a highly invasive and metabolically plastic tumor with an inevitable recurrence. The neuronal glucose transporter 3 (GLUT3) was previously reported to correlate with poor glioma patient survival and be upregulated in GBM cells to promote therapeutic resistance and survival under restricted glucose conditions. It has been suggested that the increased glucose uptake mediated by GLUT3 elevation promotes survival of circulating tumor cells to facilitate metastasis. Here we suggest a more direct role for GLUT3 in promoting invasion that is not dependent upon changes in cell survival or metabolism. Analysis of glioma datasets demonstrated that GLUT3, but not GLUT1, expression was elevated in invasive disease. In human xenograft derived GBM cells, GLUT3, but not GLUT1, elevation significantly increased invasion in transwell assays, but not growth or migration. Further, there were no changes in glycolytic metabolism that correlated with invasive phenotypes. We identified the GLUT3 C-terminus as mediating invasion: substituting the C-terminus of GLUT1 for that of GLUT3 reduced invasion. RNA-seq analysis indicated changes in extracellular matrix organization in GLUT3 overexpressing cells, including upregulation of osteopontin. Together, our data suggest a role for GLUT3 in increasing tumor cell invasion that is not recapitulated by GLUT1, is separate from its role in metabolism and survival as a glucose transporter, and is likely broadly applicable since GLUT3 expression correlates with metastasis in many solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.