Background: Piperacillin is a central drug in the treatment of Pseudomonas aeruginosa spondylodiscitis. Intermittent short-term infusion (STI) remains standard treatment in most centres, although the application of continuous infusion (CI) has shown promising results in other clinical settings. We aimed to evaluate time above the minimal inhibitory concentration (fT > MIC) of the free fraction of piperacillin in steady state conditions in porcine cervical spine tissue following CI and STI using microdialysis with MIC targets of 4, 8, and 16 μg/mL. Methods: 16 female pigs were randomized to receive piperacillin/tazobactam as STI (4/0.5 g every 6 h) or CI (4/0.5 g as a bolus followed by 12/1.5 g) for 18 h. Microdialysis catheters were placed for sampling of piperacillin concentrations from the intervertebral disc, vertebral cancellous bone, paravertebral muscle, and adjacent subcutaneous tissue during the third dosing interval (12–18 h). Blood samples were collected as reference. Results: CI resulted in fT > MIC > 82% across all compartments and targets, except for intervertebral disc (37%) and vertebral cancellous bone (28%) at MIC = 16 μg/mL. In Group STI, >72% fT > MIC was reached for MIC = 4 μg/mL in all investigated compartments, while for MIC = 16 μg/mL only subcutaneous tissue exhibited fT > MIC > 50%. Conclusion: CI of piperacillin resulted in higher fT > MIC compared to STI infusion across the investigated tissues and targets. CI should therefore be considered in spondylodiscitis cases requiring piperacillin treatment.
Aims Prompt and sufficient broad-spectrum empirical antibiotic treatment is key to preventing infection following open tibial fractures. Succeeding co-administration, we dynamically assessed the time for which vancomycin and meropenem concentrations were above relevant epidemiological cut-off (ECOFF) minimal inhibitory concentrations (T > MIC) in tibial compartments for the bacteria most frequently encountered in open fractures. Low and high MIC targets were applied: 1 and 4 µg/ml for vancomycin, and 0.125 and 2 µg/ml for meropenem. Methods Eight pigs received a single dose of 1,000 mg vancomycin and 1,000 mg meropenem simultaneously over 100 minutes and 10 minutes, respectively. Microdialysis catheters were placed for sampling over eight hours in tibial cancellous bone, cortical bone, and adjacent subcutaneous adipose tissue. Venous blood samples were collected as references. Results Across the targeted ECOFF values, vancomycin displayed longer T > MIC in all the investigated compartments in comparison to meropenem. For both drugs, cortical bone exhibited the shortest T > MIC. For the low MIC targets and across compartments, mean T > MIC ranged between 208 and 449 minutes (46% to 100%) for vancomycin and between 189 and 406 minutes (42% to 90%) for meropenem. For the high MIC targets, mean T > MIC ranged between 30 and 446 minutes (7% to 99%) for vancomycin and between 45 and 181 minutes (10% to 40%) for meropenem. Conclusion The differences in the T > MIC between the low and high targets illustrate how the interpretation of these results is highly susceptible to the defined MIC target. To encompass any trauma, contamination, or individual tissue differences, a more aggressive dosing approach may be considered to achieve longer T > MIC in all the exposed tissues, and thereby lower the risk of acquiring an infection after open tibial fractures. Cite this article: Bone Joint Res 2022;11(2):112–120.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.