BackgroundLung remodeling and pulmonary fibrosis are serious, life‐threatening conditions resulting from diseases such as chronic severe asthma and idiopathic pulmonary fibrosis (IPF). Preclinical evidence suggests that JNK enzyme function is required for key steps in the pulmonary fibrotic process. However, a selective JNK inhibitor has not been investigated in translational models of lung fibrosis with clinically relevant biomarkers, or in IPF patients. MethodsThe JNK inhibitor CC‐930 was evaluated in the house dust mite‐induced fibrotic airway mouse model, in a phase I healthy volunteer pharmacodynamic study, and subsequently in a phase II multicenter study of mild/moderate IPF (n = 28), with a 4‐week, placebo‐controlled, double‐blind, sequential ascending‐dose period (50 mg QD, 100 mg QD, 100 mg BID) and a 52‐week open‐label treatment‐extension period. ResultsIn the preclinical model, CC‐930 attenuated collagen 1A1 gene expression, peribronchiolar collagen deposition, airway mucin MUC5B expression in club cells, and MMP‐7 expression in lung, bronchoalveolar lavage fluid, and serum. In the phase I study, CC‐930 reduced c‐Jun phosphorylation induced by UV radiation in skin. In the phase II IPF study, there was a CC‐930 dose‐dependent trend in reduction of MMP‐7 and SP‐D plasma protein levels. The most commonly reported adverse events were increased ALT, increased AST, and upper respiratory tract infection (six subjects each, 21.4 %). A total of 13 subjects (46.4 %) experienced adverse events that led to discontinuation of study drug. Nine out of 28 subjects experienced progressive disease in this study. The mean FVC (% predicted) declined after 26–32 weeks at doses of 100 mg QD and 100 mg BID. Changes in MMP‐7, SP‐D, and tenascin‐C significantly correlated with change in FVC (% predicted). ConclusionsThese results illustrate JNK enzymatic activity involvement during pulmonary fibrosis, and support systemic biomarker use for tracking disease progression and the potential clinical benefit of this novel intervention in IPF. Trial registration ClinicalTrials.gov NCT01203943
Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp−/− mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF.
Epithelial cells have been suggested as potential drivers of lung fibrosis, although the epithelial-dependent pathways that promote fibrogenesis remain unknown. Extracellular matrix is increasingly recognized as an environment that can drive cellular responses in various pulmonary diseases. In this study, we demonstrate that transforming growth factor-β1 (TGF-β1)-stimulated mouse tracheal basal (MTB) cells produce provisional matrix proteins in vitro, which initiate mesenchymal changes in subsequently freshly plated MTB cells via Rho kinase- and c-Jun NH-terminal kinase (JNK1)-dependent processes. Repopulation of decellularized lung scaffolds, derived from mice with bleomycin-induced fibrosis or from patients with idiopathic pulmonary fibrosis, with wild-type MTB cells resulted in a loss of epithelial gene expression and augmentation of mesenchymal gene expression compared with cells seeded into decellularized normal lungs. In contrast, Jnk1 basal cells seeded into fibrotic lung scaffolds retained a robust epithelial expression profile, failed to induce mesenchymal genes, and differentiated into club cell secretory protein-expressing cells. This new paradigm wherein TGF-β1-induced extracellular matrix derived from MTB cells activates a JNK1-dependent mesenchymal program, which impedes subsequent normal epithelial cell homeostasis, provides a plausible scenario of chronic aberrant epithelial repair, thought to be critical in lung fibrogenesis. This study identifies JNK1 as a possible target for inhibition in settings wherein reepithelialization is desired.
Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ, which will enable further discovery into the role of S-glutathionylation in biology and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.