Abstract. The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance -those of the permanently frozen soils (permafrost), and of the great expanse of boreal forestare vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO 2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i) temperature gradients between the atmosphere and deep soils, (ii) the hydrological components comprising the water balance of the largest highlatitude basins, and (iii) CO 2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress andPublished by Copernicus Publications on behalf of the European Geosciences Union. 122M. Guimberteau et al.: ORCHIDEE-MICT, a LSM for the high latitudes a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcingdependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.
Abstract. The high-latitude regions of the northern hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance – those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest – are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently-developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input data sets, are extensively evaluated against: (i) temperature gradients between the atmosphere and deep soils; (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.
International audienceNet primary production is the initial step of the carbon cycle in which atmospheric CO2 is fixed by plants. The responses of net primary production (NPP) to climate change and CO2 are key processes that have the potential to significantly affect the climate–carbon feedback and future atmospheric CO2 levels. Understanding future NPP changes is important for China that became the world's largest CO2 emitter since 2006. Here, we analysed NPP changes in China under the four emission scenarios from 11 Earth system models participating in the Coupled Model Intercomparison Project Phase 5. We find a general increase of NPP over the 21st century under the four emission scenarios, with the large percentage increase in northwestern China and Qinghai–Tibetan Plateau. However, there is a large model spread in the increase of NPP at both country and local scales. We present a statistical approach to assess various processes to explain this large spread, and find that the large spread at the country level is predominantly attributed to inter-model difference in parameterization of CO2 fertilization effect within each emission scenario. But the parameterization of CO2 fertilization effect not always dominates over the model spread across China. When it comes to the local scale, the model spread can be significantly contributed by inter-model difference in parameterization of NPP responses to precipitation along with precipitation projection in northwestern China. Our findings provide the reasons for divergent responses of future NPP through process decomposition and are the first to pinpoint that the model process dominating over the uncertainty exhibits regional dependence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.