Antiangiogenic therapy is a clinically validated modality in cancer treatment. To date, all approved antiangiogenic drugs primarily inhibit the VEGF pathway. Delta-like ligand 4 (DLL4) has been identified as a potential drug target in VEGFindependent angiogenesis and tumor-initiating cell (TIC) survival. A dual-specific biologic targeting both VEGF and DLL4 could be an attractive strategy to improve the effectiveness of anti-VEGF therapy. ABT-165 was uniquely engineered using a proprietary dual-variable domain immunoglobulin (DVD-Ig) technology based on its ability to bind and inhibit both DLL4 and VEGF. In vivo, ABT-165 induced significant tumor growth inhibition compared with either parental antibody treatment alone, due, in part, to the disruption of functional tumor vasculature. In combination with chemotherapy agents, ABT-165 also induced greater antitumor response and outperformed anti-VEGF treatment. ABT-165 displayed nonlinear pharmacokinetic profiles in cynomolgus monkeys, with an apparent terminal half-life > 5 days at a target saturation dose. In a GLP monkey toxicity study, ABT-165 was well-tolerated at doses up to 200 mg/kg with non-adverse treatment-related histopathology findings limited to the liver and thymus. In summary, ABT-165 represents a novel antiangiogenic strategy that potently inhibits both DLL4 and VEGF, demonstrating favorable in vivo efficacy, pharmacokinetic, and safety profiles in preclinical models. Given these preclinical attributes, ABT-165 has progressed to a phase I study.
Depatuxizumab mafodotin (depatux-m, ABT-414) is a tumor-selective antibody drug conjugate (ADC) comprised of the anti-EGFR antibody ABT-806 and the monomethyl auristatin F (MMAF) warhead. Depatux-m has demonstrated promising clinical activity in glioblastoma multiforme (GBM) patients and is currently being evaluated in clinical trials in first-line and recurrent GBM disease settings. Depatux-m responses have been restricted to patients with amplified EGFR, highlighting the need for therapies with activity against tumors with nonamplified EGFR overexpression. In addition, depatux-m dosing has been limited by corneal side effects common to MMAF conjugates. We hypothesized that a monomethyl auristatin E (MMAE) ADC utilizing an EGFR-targeting antibody with increased affinity may have broader utility against tumors with more modest EGFR overexpression while mitigating the risk of corneal side effects. We describe here preclinical characterization of ABBV-221, an EGFR-targeting ADC comprised of an affinity-matured ABT-806 conjugated to MMAE. ABBV-221 binds to a similar EGFR epitope as depatux-m and retains tumor selectivity with increased binding to EGFR-positive tumor cells and greater potency. ABBV-221 displays increased tumor uptake and antitumor activity against wild-type EGFR-positive xenografts with a greatly reduced incidence of corneal side effects relative to depatux-m. ABBV-221 has similar activity as depatux-m against an EGFR-amplified GBM patient derived xenograft (PDX) model and is highly effective alone and in combination with standard-of-care temozolomide in an EGFRvIII-positive GBM xenograft model. Based on these results, ABBV-221 has advanced to a phase I clinical trial in patients with advanced solid tumors associated with elevated levels of EGFR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.