Programmed genome rearrangements drive functional gene assembly in ciliates during the development of the somatic macronucleus. The elimination of germline sequences is directed by noncoding RNAs and is initiated by DNA double-strand breaks, but the enzymes responsible for DNA cleavage have not been identified. We show here that PiggyMac (Pgm), a domesticated piggyBac transposase, is required for these rearrangements in Paramecium tetraurelia. A GFP-Pgm fusion localizes in developing macronuclei, where rearrangements take place, and RNAi-mediated silencing of PGM abolishes DNA cleavage. This is the first in vivo evidence suggesting an essential endonucleolytic function of a domesticated piggyBac transposase.Supplemental material is available at http://www.genesdev.org.
Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.