Diffusion MRI (dMRI) data acquired on different scanners varies significantly in its content throughout the brain even if the acquisition parameters are nearly identical. Thus, proper harmonization of such data sets is necessary to increase the sample size and thereby the statistical power of neuroimaging studies. In this paper, we present a novel approach to harmonize dMRI data (the raw signal, instead of dMRI derived measures such as fractional anisotropy) using rotation invariant spherical harmonic (RISH) features embedded within a multi-modal image registration framework. All dMRI data sets from all sites are registered to a common template and voxel-wise differences in RISH features between sites at a group level are used to harmonize the signal in a subject-specific manner. We validate our method on diffusion data acquired from seven different sites (two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across these sites before and after data harmonization. Validation was also done on a group oftest subjects, which were not used to "learn" the harmonization parameters. We also show results using TBSS before and after harmonization for independent validation of the proposed methodology. Using synthetic data, we show that any abnormality in diffusion measures due to disease is preserved during the harmonization process. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences in the signal can be removed using the proposed method in a model independent manner.
ObjectivesTo determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction.Materials and methods3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors.ResultsEighty-six former NFL players (55.2 ± 8.0 years) and 22 control subjects (57.0 ± 6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right −0.170, left −0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction.ConclusionsAutomated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.