High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a=3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0H_c2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.
Background There is insufficient knowledge about how aerobic exercise impacts the disease process of multiple sclerosis, which is characterized by accumulation of white matter lesions and accelerated brain atrophy. Objective To examine the effect of aerobic exercise on neuroinflammation and neurodegeneration by magnetic resonance imaging and clinical measures of disease activity and progression in persons with multiple sclerosis. Patients and methods An exploratory 12-week randomized control trial including an intervention group ( n = 14, 12 weeks of aerobic exercise twice weekly) and a control group ( n = 14, continuation of usual lifestyle). Primary outcomes were magnetic resonance imaging measures (lesion load, brain structure volume change), while secondary outcomes included disability measures, blood cytokine levels, cognitive tests and patient-reported outcomes. Results The effects of aerobic exercise on whole brain and grey matter atrophy were minor. Surprisingly, the observed effect on volume (atrophy) in selected brain substructures was heterogeneous. Putaminal and posterior cingulate volumes decreased, parahippocampal gyrus volume increased, thalamus and amygdala volume remained the same, and active lesion load and count decreased. However, apart from weak improvements in walking speed and brain-derived neurotrophic factor levels, there was no effect of aerobic exercise on other clinical, cognitive or patient-reported outcomes. Conclusion These results suggest that aerobic exercise in persons with multiple sclerosis has a positive effect on the volume of some of the substructures of the brain, possibly indicating a slowing of the neurodegenerative process in these regions, but a negative impact on the volume of some other substructures, with unclear implications. Further research is needed to determine whether the slight decrease in active lesion volume and count implies an anti- inflammatory effect of aerobic exercise, and the exact significance of the heterogeneous results of volumetric assessments. LAY ABSTRACT The aim of this study was to evaluate the effects of aerobic exercise (physical exercise in the form of aerobics) on people with multiple sclerosis who were being treated with fingolimod. Two groups of patients with multiple sclerosis were studied: an intervention group ( n = 14) who undertook 12 weeks of exercise training, and a control group ( n = 14) who continued with their usual lifestyle. Magnetic resonance imaging, bloodwork analysis and some other clinical assessments were performed before and after the 12-week period, and the patients completed several questionnaires about their wellbeing and accompanying symptoms of multiple sclerosis. The results suggest that aerobic exercise (combined with appropriate phar...
Prevalence of multiple sclerosis varies with geographic latitude. We hypothesized that this fact might be partially associated with the influence of latitude on circadian rhythm and consequently that genetic variability of key circadian rhythm regulators, ARNTL and CLOCK genes, might contribute to the risk for multiple sclerosis. Our aim was to analyse selected polymorphisms of ARNTL and CLOCK, and their association with multiple sclerosis. A total of 900 Caucasian patients and 1024 healthy controls were compared for genetic signature at 8 SNPs, 4 for each of both genes. We found a statistically significant difference in genotype (ARNTL rs3789327, P = 7.5·10−5; CLOCK rs6811520 P = 0.02) distributions in patients and controls. The ARNTL rs3789327 CC genotype was associated with higher risk for multiple sclerosis at an OR of 1.67 (95% CI 1.35–2.07, P = 0.0001) and the CLOCK rs6811520 genotype CC at an OR of 1.40 (95% CI 1.13–1.73, P = 0.002). The results of this study suggest that genetic variability in the ARNTL and CLOCK genes might be associated with risk for multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.