Mild self-etch adhesives demineralize dentin only partially, leaving hydroxyapatite around collagen within a submicron hybrid layer. We hypothesized that this residual hydroxyapatite may serve as a receptor for chemical interaction with the functional monomer and, subsequently, contribute to adhesive performance in addition to micro-mechanical hybridization. We therefore chemically characterized the adhesive interaction of 3 functional monomers with synthetic hydroxyapatite, using x-ray photoelectron spectroscopy and atomic absorption spectrophotometry. We further characterized their interaction with dentin ultra-morphologically, using transmission electron microscopy. The monomer 10-methacryloxydecyl dihydrogen phosphate (10-MDP) readily adhered to hydroxyapatite. This bond appeared very stable, as confirmed by the low dissolution rate of its calcium salt in water. The bonding potential of 4-methacryloxyethyl trimellitic acid (4-MET) was substantially lower. The monomer 2-methacryloxyethyl phenyl hydrogen phosphate (phenyl-P) and its bond to hydroxyapatite did not appear to be hydrolytically stable. Besides self-etching dentin, specific functional monomers have additional chemical bonding efficacy that is expected to contribute to their adhesive potential to tooth tissue.
Resin-dentin bonds degrade over time. The objective of this study was to evaluate the influence of variables like hybridization effectiveness and diffusion/elution of interface components on degradation. Hypotheses tested were: (1) There is no difference in degradation over time between two- and three-step total-etch adhesives; and (2) a composite-enamel bond protects the adjacent composite-dentin bond against degradation. The micro-tensile bond strength (microTBS) to dentin of 2 three-step total-etch adhesives was compared with that of 2 two-step total-etch adhesives after 4 years of storage in water. Quantitative and qualitative failure analyses were conducted correlating Fe-SEM and TEM. Indirect exposure to water did not significantly reduce the microTBS of any adhesive, while direct exposure resulted in a significantly reduced microTBS of both two-step adhesives. It is concluded that resin bonded to enamel protected the resin-dentin bond against degradation, while direct exposure to water for 4 years affected bonds produced by two-step total-etch adhesives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.