BackgroundThe transcription factor B-Myb is present in all proliferating cells, and in mice engineered to remove this gene, embryos die in utero just after implantation due to inner cell mass defects. This lethal phenotype has generally been attributed to a proliferation defect in the cell cycle phase of G1.Methodology/Principal FindingsIn the present study, we show that the major cell cycle defect in murine embryonic stem (mES) cells occurs in G2/M. Specifically, knockdown of B-Myb by short-hairpin RNAs results in delayed transit through G2/M, severe mitotic spindle and centrosome defects, and in polyploidy. Moreover, many euploid mES cells that are transiently deficient in B-Myb become aneuploid and can no longer be considered viable. Knockdown of B-Myb in mES cells also decreases Oct4 RNA and protein abundance, while over-expression of B-MYB modestly up-regulates pou5f1 gene expression. The coordinated changes in B-Myb and Oct4 expression are due, at least partly, to the ability of B-Myb to directly modulate pou5f1 gene promoter activity in vitro. Ultimately, the loss of B-Myb and associated loss of Oct4 lead to an increase in early markers of differentiation prior to the activation of caspase-mediated programmed cell death.Conclusions/SignificanceAppropriate B-Myb expression is critical to the maintenance of chromosomally stable and pluripotent ES cells, but its absence promotes chromosomal instability that results in either aneuploidy or differentiation-associated cell death.
Background-Aldosterone has recently attracted considerable attention for its involvement in the pathophysiology of heart failure, in which apoptotic cell loss plays a critical role. This study examined whether aldosterone directly induces myocyte apoptosis via its specific receptors. Methods and Results-Neonatal rat cardiac myocytes were exposed to aldosterone (10 Ϫ8 to 10 Ϫ5 mol/L). Nuclear staining with Hoechst 33258 showed that aldosterone induced myocyte apoptosis in a dose-and time-dependent fashion. Treatment of myocytes with 10 Ϫ5 mol/L aldosterone significantly increased the percentage of apoptosis (15.5Ϯ1.4%) compared with serum-deprived control (7.3Ϯ0.6%). Radio ligand binding assay revealed the existence of plasma membrane receptor with high affinity (K d , 0.2 nmol/L) for aldosterone in cardiac myocytes but not in fibroblasts. Aldosterone rapidly (Ϸ30 seconds) mobilized [Ca 2ϩ ] i that was blocked by neomycin. Aldosterone induced dephosphorylation of the proapoptotic protein Bad, enhancement of mitochondrial permeability transition, decrease in mitochondrial membrane potential, and release of cytochrome c from the mitochondria into the cytosol with concomitant activation of caspase-3. These effects of aldosterone were inhibited by concurrent treatment with either an L-type Ca
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.