The diphenylalanine peptide, the core recognition motif of the beta-amyloid polypeptide, efficiently self-assembles into discrete, well-ordered nanotubes. Here, we describe the notable thermal and chemical stability of these tubular structures both in aqueous solution and under dry conditions. Scanning and transmission electron microscopy (SEM and TEM) as well as atomic force microscopy (AFM) revealed the stability of the nanotubes in aqueous solution at temperatures above the boiling point of water upon autoclave treatment. The nanotubes preserved their secondary structure at temperatures up to 90 degrees C, as shown by circular dichroism (CD) spectra. Cold field emission gun (CFEG) high-resolution scanning electron microscope (HRSEM) and thermogravimetric analysis (TGA) of the peptide nanotubes after dry heat revealed durability at higher temperature. It was shown that the thermal stability of diphenylalanine peptide nanotubes is significantly higher than that of a nonassembling dipeptide, dialanine. In addition to thermal stability, the peptide nanotubes were chemically stable in organic solvents such as ethanol, methanol, 2-propanol, acetone, and acetonitrile, as shown by SEM analysis. Moreover, the acetone environment enabled AFM imaging of the nanotubes in solution. The significant thermal and chemical stability of the peptide nanotubes demonstrated here points toward their possible use in conventional microelectronic and microelectromechanics processes and fabrication into functional nanotechnological devices.
The scientific community needs a rapid and reliable way of accurately determining the stiffness of atomic-force microscopy cantilevers. We have compared the experimentally determined values of stiffness for ten cantilever probes using four different methods. For rectangular silicon cantilever beams of well defined geometry, the approaches all yield values within 17% of the manufacturer's nominal stiffness. One of the methods is new, based on the acquisition and analysis of thermal distribution functions of the oscillator's amplitude fluctuations. We evaluate this method in comparison to the three others and recommend it for its ease of use and broad applicability.
The attachment of biomolecules, in particular proteins, onto solid supports is fundamental in the development of advanced biosensors, bioreactors, affinity chromatographic separation materials, and many diagnostic techniques. In addition, the effective investigation of biomolecular structure and function with scanning probe microscopy often requires a strong attachment of the biomolecule to a substrate. Here, we investigate the binding of the protein catalase to gold surfaces modified by self-assembled monolayers (SAMs). The chemical and physical adsorption of the protein molecules onto SAMs of 3-mercaptopropanoic acid (3-MPA), 11-mercaptoundecanoic acid (11-MUA), and a mixture of the two acid thiols (mixed) was investigated by utilizing tapping mode atomic force microscopy, scanning tunneling microscopy, surface plasmon resonance (SPR), static secondary ion mass spectrometry, and X-ray photoelectron spectroscopy. The surface concentration of catalase adsorbed on the SAMs decreased in the following order: mixed > 11-MUA > 3-MPA. Utilizing the terminal carboxylic acid functionalities, catalase was immobilized with a water-soluble carbodiimide and N-hydroxysuccinimide (NHS). Immobilization resulted in increased coverage of the protein. SPR studies on silver surfaces modified by these SAMs indicate that immobilization of carbodiimide and NHS decreased in the same order, namely mixed > 11-MUA > 3-MPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.