Demyelination contributes to the physiological and behavioral deficits after contusive spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. We show here that rat embryonic day 14 spinal cord-derived glial-restricted precursor cells (GRPs), which differentiate into both oligodendrocytes and astrocytes, formed normal-appearing central myelin around axons of cultured DRG neurons and had enhanced proliferation and survival in the presence of neurotrophin 3 (NT3) and brain-derived neurotrophin factor (BDNF). We infected GRPs with retroviruses expressing the multineurotrophin D15A (with both BDNF and NT3 activities) and then transplanted them into the contused adult thoracic spinal cord at 9 d after injury. Expression of D15A in the injured spinal cord is five times higher in animals receiving D15A-GRP grafts than ones receiving enhanced green fluorescent protein (EGFP)-GRP or DMEM grafts. Six weeks after transplantation, the grafted GRPs differentiated into mature oligodendrocytes expressing both myelin basic protein (MBP) and adenomatus polyposis coli (APC).UltrastructuralanalysisshowedthatthegraftedGRPsformedmorphologicallynormal-appearingmyelinsheathsaroundtheaxonsinthe ventrolateral funiculus (VLF) of spinal cord. Expression of D15A significantly increased the percentage of APC ϩ oligodendrocytes of grafted GRPs (15-30%). Most importantly, 8 of 12 rats receiving grafts of D15A-GRPs recovered transcranial magnetic motor-evoked potential responses, indicating that conduction through the demyelinated VLF axons was restored. Such electrophysiological recovery was not observed in rats receiving grafts of EGFP-GRPs, D15A-NIH3T3 cells, or an injection of an adenovirus expressing D15A. Recovery of hindlimb locomotor function was also significantly enhanced only in the D15A-GRP-grafted animals at 4 and 5 weeks after transplantation. Therefore, combined treatment with neurotrophins and GRP grafts can facilitate functional recovery after traumatic SCI and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
After spinal cord injury (SCI), the absence of an adequate blood supply to injured tissues has been hypothesized to contribute to the lack of regeneration. In this study, blood vessel changes were examined in 28 adult female Fischer 344 rats at 1, 3, 7, 14, 28, and 60 days after a 12.5 g x cm NYU impactor injury at the T9 vertebral level. Laminin, collagen IV, endothelial barrier antigen (SMI71), and rat endothelial cell antigen (RECA-1) immunoreactivities were used to quantify blood vessel per area densities and diameters in ventral gray matter (VGM), ventral white matter (VWM), and dorsal columns (DC) at levels ranging 15 mm rostral and caudal to the epicenter. This study demonstrates an angiogenic response, defined as SMI71/RECA-1-immunopositive endothelial cells that colocalize with a robust deposition of basal lamina and basal lamina streamers, 7 days after injury within epicenter VGM. This angiogenesis diminishes concurrent with cystic cavity formation. GAP43- and neurofilament- (68 kDa and 210 kDa) immunopositive fiber outgrowth was associated with these new blood vessels by day 14. Between 28 and 60 days after injury, increases in SMI71-immunopositive blood vessel densities were observed in the remaining VWM and DC with a corresponding increase in vessel diameters up to 15 mm rostral and caudal to the epicenter. This second angiogenesis within VWM and DC, unlike the acute response observed in VGM, did not correspond to any previously described changes in locomotor behaviors in this model. We propose that therapies targeting angiogenic processes be directed at the interval between 3 and 7 days after SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.