The brain’s spontaneous, intrinsic activity is increasingly being shown to reveal brain function, delineate large scale brain networks, and diagnose brain disorders. One of the most studied and clinically utilized types of intrinsic brain activity are oscillations in the electrocorticogram (ECoG), a relatively localized measure of cortical synaptic activity. Here we objectively characterize the types of ECoG oscillations commonly observed over particular cortical areas when an individual is awake and immobile with eyes closed, using a surface-based cortical atlas and cluster analysis. Both methods show that [1] there is generally substantial variability in the dominant frequencies of cortical regions and substantial overlap in dominant frequencies across the areas sampled (primarily lateral central, temporal, and frontal areas), [2] theta (4–8 Hz) is the most dominant type of oscillation in the areas sampled with a mode around 7 Hz, [3] alpha (8–13 Hz) is largely limited to parietal and occipital regions, and [4] beta (13–30 Hz) is prominent peri-Rolandically, over the middle frontal gyrus, and the pars opercularis. In addition, the cluster analysis revealed seven types of ECoG spectral power densities (SPDs). Six of these have peaks at 3, 5, 7 (narrow), 7 (broad), 10, and 17 Hz, while the remaining cluster is broadly distributed with less pronounced peaks at 8, 19, and 42 Hz. These categories largely corroborate conventional sub-gamma frequency band distinctions (delta, theta, alpha, and beta) and suggest multiple sub-types of theta. Finally, we note that gamma/high gamma activity (30+ Hz) was at times prominently observed, but was too infrequent and variable across individuals to be reliably characterized. These results should help identify abnormal patterns of ECoG oscillations, inform the interpretation of EEG/MEG intrinsic activity, and provide insight into the functions of these different oscillations and the networks that produce them. Specifically, our results support theories of the importance of theta oscillations in general cortical function, suggest that alpha activity is primarily related to sensory processing/attention, and demonstrate that beta networks extend far beyond primary sensorimotor regions.
In recent years, functional neuroimaging has disclosed a network of cortical areas in the basal temporal lobe that selectively respond to visual scenes, including the parahippocampal place area (PPA). Beyond the observation that lesions involving the PPA cause topographic disorientation, there is little causal evidence linking neural activity in that area to the perception of places. Here, we combined functional magnetic resonance imaging (fMRI) and intracranial EEG (iEEG) recordings to delineate place-selective cortex in a patient implanted with stereo-EEG electrodes for presurgical evaluation of drug-resistant epilepsy. Bipolar direct electrical stimulation of a cortical area in the collateral sulcus and medial fusiform gyrus, which was place-selective according to both fMRI and iEEG, induced a topographic visual hallucination: the patient described seeing indoor and outdoor scenes that included views of the neighborhood he lives in. By contrast, stimulating the more lateral aspect of the basal temporal lobe caused distortion of the patient's perception of faces, as recently reported (Parvizi et al., 2012). Our results support the causal role of the PPA in the perception of visual scenes, demonstrate that electrical stimulation of higher order visual areas can induce complex hallucinations, and also reaffirm direct electrical brain stimulation as a tool to assess the function of the human cerebral cortex.
The distribution of AED use likely reflects current prescribing patterns for PWWE cared for in USA tertiary epilepsy centers. This distribution has changed markedly since the turn of the century, but changes in the general population remain uncertain.
Background and ObjectivesAlthough genetic testing among children with epilepsy has demonstrated clinical utility and become a part of routine testing, studies in adults are limited. This study reports the diagnostic yield of genetic testing in adults with epilepsy.MethodsUnrelated individuals aged 18 years and older who underwent diagnostic genetic testing for epilepsy using a comprehensive, next-generation sequencing-based, targeted gene panel (range 89–189 genes) were included in this cross-sectional study. Clinical information, provided at the discretion of the ordering clinician, was reviewed and analyzed. Diagnostic yield was calculated for all individuals including by age at seizure onset and comorbidities based on clinician-reported information. The proportion of individuals with clinically actionable genetic findings, including instances when a specific treatment would be indicated or contraindicated due to a diagnostic finding, was calculated.ResultsAmong 2,008 individuals, a diagnostic finding was returned for 218 adults (10.9%), with clinically actionable findings in 55.5% of diagnoses. The highest diagnostic yield was in adults with seizure onset during infancy (29.6%, 0–1 year), followed by in early childhood (13.6%, 2–4 years), late childhood (7.0%, 5–10 years), adolescence (2.4%, 11–17 years), and adulthood (3.7%, ≥18 years). Comorbid intellectual disability (ID) or developmental delay resulted in a high diagnostic yield (16.0%), most notably for females (19.6% in females vs 12.3% in males). Among individuals with pharmacoresistant epilepsy, 13.5% had a diagnostic finding, and of these, 57.4% were clinically actionable genetic findings.DiscussionThese data reinforce the utility of genetic testing for adults with epilepsy, particularly for those with childhood-onset seizures, ID, and pharmacoresistance. This is an important consideration due to longer survival and the complexity of the transition from pediatric to adult care. In addition, more than half of diagnostic findings in this study were considered clinically actionable, suggesting that genetic testing could have a direct impact on clinical management and outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.