Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen-specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.
Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using a RNA interference screen, we identified five RabGTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to act in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms play different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (SYTL4) and Slac2b (EXPH5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and open ways to manipulate exosome secretion in vivo.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.