Lead-halide perovskites are promising materials for opto-electronic applications. Recent reports indicated that their mechanical and electronic properties are strongly affected by the lattice vibrations. Herein we report far-infrared spectroscopy measurements of CH3NH3Pb(I/Br/Cl)3 thin films and single crystals at room temperature and a detailed quantitative analysis of the spectra. We find strong broadening and anharmonicity of the lattice vibrations for all three halide perovskites, which indicates dynamic disorder of the lead-halide cage at room temperature. We determine the frequencies of the transversal and longitudinal optical phonons, and use them to calculate the static dielectric constants, polaron masses, electron-phonon coupling constants, and upper limits for the phonon-scattering limited charge carrier mobilities. Our findings place an upper limit in the range of 200 cm 2 V −1 s −1 for the room temperature charge carrier mobility in MAPbI3 single crystals, and are important for the basic understanding of charge transport processes and mechanical properties in metal halide perovskites.
Efficient electrical doping of organic semiconductors is a necessary prerequisite for the fabrication of high performance organic electronic devices. In this work, we study p-type doping of poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ) spin-cast from two different solvents. Using electron diffraction, we find strong dopant-induced π−π-stacking for films from the solvent chloroform, but not from chlorobenzene. This image is confirmed and expanded by the analysis of vibrational features of P3HT and polaron absorptions using optical spectroscopy. Here, a red-shifted polaron absorption is found in doped films from chloroform, caused by a higher conjugation length of the polymer backbone. These differences result in a higher conductivity of films from chloroform. We use optical spectroscopy on the corresponding blend solutions to shed light on the origin of this effect and propose a model to explain why solutions of doped P3HT reveal more aggregation of charged molecules in chlorobenzene, whereas more order is finally observed in dried films from chloroform. Our study emphasizes the importance of solvent parameters exceeding the bare solubility of pure dopant and host material for the preparation of highly conductive doped films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.