The landscape of genomic alterations across childhood cancers a list of authors and affiliations appears at the end of the paper. OPENPan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.Cure rates for childhood cancers have increased to about 80% in recent decades, but cancer is still the leading cause of death by disease in the developed world among children over one year of age 1,2 . Furthermore, many children who survive cancer suffer from long-term sequelae of surgery, cytotoxic chemotherapy, and radiotherapy, including mental disabilities, organ toxicities, and secondary cancers 3 . A crucial step in developing more specific and less damaging therapies is the unravelling of the complete genetic repertoire of paediatric malignancies, which differ from adult malignancies in terms of their histopathological entities and molecular subtypes 4 . Over the past few years, many entityspecific sequencing efforts have been launched, but the few paediatric pan-cancer studies thus far have focused only on mutation frequencies, germline predisposition, and alterations in epigenetic regulators [4][5][6] .We have carried out a broad exploration of cancers in children, adolescents, and young adults, by incorporating small mutations and copy-number or structural variants on somatic and germline levels, and by identifying putative cancer genes and comparing them to those previously reported in adult cancers by The Cancer Genome Atlas (TCGA) 7 . We have also examined mutational signatures and potential drug targets. The compendium of genetic alterations presented here is available to the scientific community at http://www.pedpancan.com.This integrative analysis includes 24 types of cancer and covers all major childhood cancer entities, many of which occur exclusively in children 8 (Fig. 1, Supplementary Table 1). Ninety-five per cent of the patients in this study were diagnosed during childhood or adolescence (aged 18 years or younger) and 5% as young adults (up to 25 years) (Extended Data ...
SUMMARY Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated “CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)”, “CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)”, “CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)”, and “CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)”, will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.
Atypical teratoid/rhabdoid tumor (ATRT) is one of the most common brain tumors in infants. Although the prognosis of ATRT patients is poor, some patients respond favorably to current treatments, suggesting molecular inter-tumor heterogeneity. To investigate this further, we genetically and epigenetically analyzed 192 ATRTs. Three distinct molecular subgroups of ATRTs, associated with differences in demographics, tumor location, and type of SMARCB1 alterations, were identified. Whole-genome DNA and RNA sequencing found no recurrent mutations in addition to SMARCB1 that would explain the differences between subgroups. Whole-genome bisulfite sequencing and H3K27Ac chromatin-immunoprecipitation sequencing of primary tumors, however, revealed clear differences, leading to the identification of subgroup-specific regulatory networks and potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.