Machine Learning (ML) has become an essential asset for the life sciences and medicine. We selected 300 articles describing ML applications from 17 journals sampling 26 different fields between 2011 and 2018. Independent evaluation by two readers highlighted three results.First, only half of the articles shared software, 64% shared data, and 81% applied any kind of evaluation. Although these aspects are crucial to ensure validity and reliability of ML applications, they were met more by publications in lower-ranked journals. Second, the authors' scientific background highly influenced how technical aspects were addressed: reproducibility and computational evaluation methods were more prominent with computational co-authors; experimental proofs more with experimentalists. Third, 73% of the ML applications resulted from interdisciplinary collaborations comprising authors from at least two of the three disciplines: computational sciences, experimental biology, medicine._deleted_ The data suggested collaborations between computational and experimental scientists to generate more computationally sound and impactful work integrating knowledge.Furthermore, such collaborations provide opportunities to both sides: computational scientists are given access to novel and challenging real-world biological data increasing the scientific impact of their research, and experimentalists benefit from more in-depth computational analyses improving the technical correctness of work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.