Background The cerebrospinal fluid (CSF) biomarkers amyloid beta 1–42, total tau, and phosphorylated tau are used increasingly for Alzheimer’s disease (AD) research and patient management. However, there are large variations in biomarker measurements among and within laboratories. Methods Data from the first nine rounds of the Alzheimer’s Association quality control program was used to define the extent and sources of analytical variability. In each round, three CSF samples prepared at the Clinical Neurochemistry Laboratory (Mölndal, Sweden) were analyzed by single-analyte enzyme-linked immunosorbent assay (ELISA), a multiplexing xMAP assay, or an immunoassay with electrochemoluminescence detection. Results A total of 84 laboratories participated. Coefficients of variation (CVs) between laboratories were around 20% to 30%; within-run CVs, less than 5% to 10%; and longitudinal within-laboratory CVs, 5% to 19%. Interestingly, longitudinal within-laboratory CV differed between biomarkers at individual laboratories, suggesting that a component of it was assay dependent. Variability between kit lots and between laboratories both had a major influence on amyloid beta 1–42 measurements, but for total tau and phosphorylated tau, between-kit lot effects were much less than between-laboratory effects. Despite the measurement variability, the between-laboratory consistency in classification of samples (using prehoc-derived cutoffs for AD) was high (>90% in 15 of 18 samples for ELISA and in 12 of 18 samples for xMAP). Conclusions The overall variability remains too high to allow assignment of universal biomarker cutoff values for a specific intended use. Each laboratory must ensure longitudinal stability in its measurements and use internally qualified cutoff levels. Further standardization of laboratory procedures and improvement of kit performance will likely increase the usefulness of CSF AD biomarkers for researchers and clinicians.
Calcium signaling critical to neural functions is mediated through Ca(2+) channels localized on both the plasma membrane and intracellular organelles such as endoplasmic reticulum. Whereas Ca(2+) influx occurs via the voltage- or/and ligand-sensitive Ca(2+) channels, Ca(2+) release from intracellular stores that amplifies further the Ca(2+) signal is thought to be involved in more profound and lasting changes in neurons. The ryanodine receptor, one of the two major intracellular Ca(2+) channels, has been an important target for studying Ca(2+) signaling in brain functions, including learning and memory, due to its characteristic Ca(2+)-induced Ca(2+) release. In this study, we report regional and cellular distributions of the type-2 ryanodine receptor (RyR2) mRNA in the rat brain, and effects of spatial learning on RyR2 gene expression at mRNA and protein levels in the rat hippocampus. Using in situ hybridization, reverse transcription polymerase chain reaction, and ribonuclease protection assays, significant increases in RyR2 mRNA were found in the hippocampus of rats trained in an intensive water maze task. With immunoprecipitation and immunoblotting, protein levels of RyR2 were also demonstrated to be increased in the microsomal fractions prepared from hippocampi of trained rats. These results suggest that RyR2, and hence the RyR2-mediated Ca(2+) signals, may be involved in memory processing after spatial learning. The increases in RyR2 mRNA and protein at 12 and 24 h after training could contribute to more permanent changes such as structural modifications during long-term memory storage. Zhao, W., Meiri, N., Xu, H., Cavallaro, S., Quattrone, A., Zhang, L., Alkon, D. A. Spatial learning induced changes in expression of the ryanodine type II receptor in the rat hippocampus.
The completion of the Human Genome Project aroused renewed interest in alternative splicing, an efficient and widespread mechanism that generates multiple protein isoforms from individual genes. Although our knowledge about alternative splicing is growing exponentially, its real impact on cellular life is still to be clarified. Connecting all splicing features (genes, splice transcripts, isoforms, and relative functions) may be useful to resolve this tangle. Herein, we will start from the case of a single gene, Parkinson protein 2, E3 ubiquitin protein ligase (PARK2), one of the largest in our genome. This gene is implicated in the pathogenesis of autosomal recessive juvenile Parkinsonism and it has been recently linked to cancer, leprosy, autism, type 2 diabetes mellitus and Alzheimer’s disease. PARK2 primary transcript undergoes an extensive alternative splicing, which enhances transcriptomic diversification and protein diversity in tissues and cells. This review will provide an update of all human PARK2 alternative splice transcripts and isoforms presently known, and correlate them to those in rat and mouse, two common animal models for studying human disease genes. Alternative splicing relies upon a complex process that could be easily altered by both cis and trans-acting mutations. Although the contribution of PARK2 splicing in human disease remains to be fully explored, some evidences show disruption of this versatile form of genetic regulation may have pathological consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.