The combined future impacts of climate change and industrial and agricultural practices in the Baltic Sea catchment on the Baltic Sea ecosystem were assessed. For this purpose 16 transient simulations for 1961-2099 using a coupled physical-biogeochemical model of the Baltic Sea were performed. Four climate scenarios were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Baltic Sea Action Plan (BSAP). Annual and seasonal mean changes of climate parameters and ecological quality indicators describing the environmental status of the Baltic Sea like bottom oxygen, nutrient and phytoplankton concentrations and Secchi depths were studied. Assuming present-day nutrient concentrations in the rivers, nutrient loads from land increase during the twenty first century in all investigated scenario simulations due to increased volume flows caused by increased net precipitation in the Baltic catchment area. In addition, remineralization rates increase due to increased water temperatures causing enhanced nutrient flows from the sediments. Cause-andeffect studies suggest that both processes may play an important role for the biogeochemistry of eutrophicated seas in future climate partly counteracting nutrient load reduction efforts like the BSAP.
Multi-model ensemble simulations for the marine biogeochemistry and food web of the Baltic Sea were performed for the period 1850-2098, and projected changes in the future climate were compared with the past climate environment. For the past period 1850-2006, atmospheric, hydrological and nutrient forcings were reconstructed, based on historical measurements. For the future period 1961-2098, scenario simulations were driven by Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 1 1748-9326/12/034005+08$33.00 c 2012 IOP Publishing Ltd Printed in the UK Environ. Res. Lett. 7 (2012) 034005 H E M Meier et alregionalized global general circulation model (GCM) data and forced by various future greenhouse gas emission and air-and riverborne nutrient load scenarios (ranging from a pessimistic 'business-as-usual' to the most optimistic case). To estimate uncertainties, different models for the various parts of the Earth system were applied. Assuming the IPCC greenhouse gas emission scenarios A1B or A2, we found that water temperatures at the end of this century may be higher and salinities and oxygen concentrations may be lower than ever measured since 1850. There is also a tendency of increased eutrophication in the future, depending on the nutrient load scenario. Although cod biomass is mainly controlled by fishing mortality, climate change together with eutrophication may result in a biomass decline during the latter part of this century, even when combined with lower fishing pressure. Despite considerable shortcomings of state-of-the-art models, this study suggests that the future Baltic Sea ecosystem may unprecedentedly change compared to the past 150 yr. As stakeholders today pay only little attention to adaptation and mitigation strategies, more information is needed to raise public awareness of the possible impacts of climate change on marine ecosystems.
Multi-model ensemble simulations using three coupled physical-biogeochemical models were performed to calculate the combined impact of projected future climate change and plausible nutrient load changes on biogeochemical cycles in the Baltic Sea. Climate projections for 1961-2099 were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Helsinki Commission 0 s (HELCOM) Baltic Sea Action Plan (BSAP). The model results suggest that in a future climate, water quality, characterized by ecological quality indicators like winter nutrient, summer bottom oxygen, and annual mean phytoplankton concentrations as well as annual mean Secchi depth (water transparency), will be deteriorated compared to present conditions. In case of nutrient load reductions required by the BSAP, water quality is only slightly improved. Based on the analysis of biogeochemical fluxes, we find that in warmer and more anoxic waters, internal feedbacks could be reinforced. Increased phosphorus fluxes out of the sediments, reduced denitrification efficiency and increased nitrogen fixation may partly counteract nutrient load abatement strategies.
This article compares interactively coupled atmosphereÁocean hindcast simulations with stand-alone runs of the atmosphere and ocean models using the recently developed regional oceanÁatmosphere model NEMO-Nordic for the North Sea and Baltic Sea. In the interactively coupled run, the ocean and the atmosphere components were allowed to exchange mass, momentum and heat every 3 h. Our results show that interactive coupling significantly improves simulated winter sea surface temperatures (SSTs) in the Baltic Sea. The ocean and atmosphere stand-alone runs, respectively, resulted in too low sea surface and air temperatures over the Baltic Sea. These two runs suffer from too cold prescribed ERA40 SSTs, which lower air temperatures and weaken winds in the atmosphere only run. In the ocean-only run, the weaker winds additionally lower the vertical mixing thereby lowering the upward transport of warmer subpycnocline waters. By contrast, in the interactively coupled run, the oceanÁatmosphere heat exchange evolved freely and demonstrated good skills in reproducing observed surface temperatures. Despite the strong impact on oceanic and atmospheric variables in the coupling area, no far reaching influence on atmospheric variables over land can be identified. In perturbation experiments, the different dynamics of the two coupling techniques is investigated in more detail by implementing strong positive winter temperature anomalies in the ocean model. Here, interactive coupling results in a substantially higher preservation of heat anomalies because the atmosphere also warmed which damped the ocean to atmosphere heat transfer. In the passively coupled setup , this atmospheric feedback is missing, which resulted in an unrealistically high oceanic heat loss. The main added value of interactive airÁsea coupling is twofold: (1) the elimination of any boundary condition at the airÁsea interface and (2) the more realistic dynamical response to perturbations in the oceanÁatmosphere heat balance, which will be essential in climate warming scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.