Fracture treatment is an old endeavour intended to promote bone healing and to also enable early loading and regain of function in the injured limb. However, in today’s clinical routine the healing potential of the initial fracture haematoma is still not fully recognized. The Arbeitsgemeinschaft für Osteosynthesefragen (AO) formed in Switzerland in 1956 formulated four AO principles of fracture treatment which are still valid today. Fracture treatment strategies have continued to evolve further, as for example the relatively new concept of minimally invasive plate osteosynthesis (MIPO). This MIPO treatment strategy harbours the benefit of an undisturbed original fracture haematoma that supports the healing process. The extent of the supportive effect of this haematoma for the bone healing process has not been considered in clinical practice so far. The rising importance of osteoimmunological aspects in bone healing supports the essential role of the initial haematoma as a source for inflammatory cells that release the cytokine pattern that directs cell recruitment towards the injured tissue. In reviewing the potential benefits of the fracture haematoma, the early development of angiogenic and osteogenic potentials within the haematoma are striking. Removing the haematoma during surgery could negatively influence the fracture healing process. In an ovine open tibial fracture model the haematoma was removed 4 or 7 days after injury and the bone that formed during the first two weeks of healing was significantly reduced in comparison with an undisturbed control. These findings indicate that whenever possible the original haematoma formed upon injury should be conserved during clinical fracture treatment to benefit from the inherent healing potential.
Osteoporosis represents the most common bone disease worldwide and results in a significantly increased fracture risk. Extrinsic and intrinsic factors implicated in the development of osteoporosis are also associated with delayed fracture healing and impaired bone regeneration. Based on a steadily increasing life expectancy in modern societies, the global implications of osteoporosis and impaired bone healing are substantial. Research in the last decades has revealed several molecular pathways that stimulate bone formation and could be targeted to treat both osteoporosis and impaired fracture healing. The identification and development of therapeutic approaches modulating bone formation, rather than bone resorption, fulfils an essential clinical need, as treatment options for reversing bone loss and promoting bone regeneration are limited. This review focuses on currently available and future approaches that may have the potential to achieve these aims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.