The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
the first month of the season, when the water management between these two practices was different, indicated that K c and water use were lower in DS systems relative to WS systems when there was only one irrigation flush during this period, while two or three irrigation flushes resulted in similar values between the two systems.
Several studies have demonstrated that Monteith's approach can efficiently predict forest gross primary production (GPP), while the modeling of net ecosystem production (NEP) is more critical, requiring the additional simulation of forest respirations. The NEP of different forest ecosystems in Italy was currently simulated by the use of a remote sensing driven parametric model (modified C-Fix) and a biogeochemical model (BIOME-BGC). The outputs of the two models, which simulate forests in quasi-equilibrium conditions, are combined to estimate the carbon fluxes of actual conditions using information regarding the existing woody biomass. The estimates derived from the methodology have been tested against daily reference GPP and NEP data collected through the eddy correlation technique at five study sites in Italy. The first test concerned the theoretical validity of the simulation approach at both annual and daily time scales and was performed using optimal model drivers (i.e., collected or calibrated over the site measurements). Next, the test was repeated to assess the operational applicability of the methodology, which was driven by spatially extended data sets (i.e., data derived from existing wall-to-wall digital maps). A good estimation accuracy was generally obtained for GPP and NEP when using optimal model drivers. The use of spatially extended data sets worsens the accuracy to a varying degree, which is properly characterized. The model drivers with the most influence on the flux modeling strategy are, in increasing order of importance, forest type, soil features, meteorology, and forest woody biomass (growing stock volume).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.