BACKGROUND Given the phenotypic similarities between rheumatoid arthritis (RA)–associated interstitial lung disease (ILD) (hereafter, RA-ILD) and idiopathic pulmonary fibrosis, we hypothesized that the strongest risk factor for the development of idiopathic pulmonary fibrosis, the gain-of-function MUC5B promoter variant rs35705950, would also contribute to the risk of ILD among patients with RA. METHODS Using a discovery population and multiple validation populations, we tested the association of the MUC5B promoter variant rs35705950 in 620 patients with RA-ILD, 614 patients with RA without ILD, and 5448 unaffected controls. RESULTS Analysis of the discovery population revealed an association of the minor allele of the MUC5B promoter variant with RA-ILD when patients with RA-ILD were compared with unaffected controls (adjusted odds ratio, 3.8; 95% confidence interval [CI], 2.8 to 5.2; P = 9.7×10−17). The MUC5B promoter variant was also significantly overrepresented among patients with RA-ILD, as compared with unaffected controls, in an analysis of the multi-ethnic case series (adjusted odds ratio, 5.5; 95% CI, 4.2 to 7.3; P = 4.7×10−35) and in a combined analysis of the discovery population and the multiethnic case series (adjusted odds ratio, 4.7; 95% CI, 3.9 to 5.8; P = 1.3×10−49). In addition, the MUC5B promoter variant was associated with an increased risk of ILD among patients with RA (adjusted odds ratio in combined analysis, 3.1; 95% CI, 1.8 to 5.4; P = 7.4×10−5), particularly among those with evidence of usual interstitial pneumonia on high-resolution computed tomography (adjusted odds ratio in combined analysis, 6.1; 95% CI, 2.9 to 13.1; P = 2.5×10−6). However, no significant association with the MUC5B promoter variant was observed for the diagnosis of RA alone. CONCLUSIONS We found that the MUC5B promoter variant was associated with RA-ILD and more specifically associated with evidence of usual interstitial pneumonia on imaging. (Funded by Société Française de Rhumatologie and others.)
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry1. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.