Vegetable production in sub-Saharan Africa faces numerous agronomic constraints that will have to be overcome to feed the increasing population and to fight malnutrition. Technology transfer and the adoption of low-tech protected cultivation techniques affordable for smallholders are believed to be able to meet this challenge. Protected cultivation techniques are a set of agricultural practices aimed at artificializing the crop environment through the use of soil covers and/or plant covers to control pests and climatic conditions. Although protected cultivation techniques may increase the yield and quality of vegetable crops and extend their production periods worldwide, the transfer of these techniques in sub-Saharan Africa raises questions about their agronomical performances, their profitability but also their environmental impacts. Are low-tech protected cultivation techniques adapted to the sustainable production of vegetables by smallholders in sub-Saharan Africa? To answer this question, we present an overview of the agronomic, economic, and environmental performances of low-tech protected cultivation techniques in sub-Saharan Africa as reported in the literature. The major conclusions that can be drawn from the review are (1) low-tech protected cultivation techniques are not suitable in all climatic conditions in sub-Saharan Africa and need to be combined with other methods to ensure adequate pest control, (2) the profitability of protected cultivation techniques relies on the capacity to offset increased production costs by higher yields and higher selling prices to be obtained with off-season and/or higher quality products, (3) breaking with existing cropping systems, the lack of technical support and skills, and the limited access to investment funding are major obstacles to the adoption of protected cultivation techniques by smallholders (4) life cycle assessments conducted in northern countries suggested that more efficient use of agricultural inputs would offset the negative impacts of protected cultivation techniques if they are properly managed, but further studies are required to be sure these results can be extrapolated to sub-Saharan Africa context. (Résumé d'auteur
For > 20 yr, Bemisia tabaci Gennadius persists as a begomovirus vector and is a serious problem in tomato production in many parts of the world. In tropical countries, the use of netting to protect horticultural crops has proven to be an effective and sustainable tool against Lepidoptera but not against small insects. This study evaluated the repellent effect of AgroNet 0.9T, a 0.9-mm pore diameter and 40-mesh size netting treated with alphacypermethrin insecticide against B. tabaci. This pyrethroid insecticide is known to have toxic and repellent effects against mosquitoes and has been used for treatment of mosquito nets. Two nontreated netting materials were used as control: AgroNet 0.9NT with 0.9-mm pore diameter and 40-mesh size and AgroNet 0.4NT with 0.4-mm pore diameter and 80-mesh size. The behavior of B. tabaci and its parasitoid Encarsia formosa Gahan as they progressed through the treated netting was studied in the laboratory in choice and no-choice tests. The development of wild B. tabaci population on tomato plants protected by the same nets was followed in two field trials implemented in Njoro, Kenya. Results obtained with the no-choice tests showed a significant reduction of movement on the treated net with 40-mesh (19%) compared with nontreated netting (35 and 46% with 80- and 40-mesh, respectively). The mortality of B. tabaci was significantly higher (two-fold) in the test tube containing only the treated netting compared with the nontreated one. The repellent effect of the treated netting was also demonstrated against E. formosa, but it did not have this toxic effect. Unlike for B. tabaci, the treated and nontreated nets appeared to have a similar repellent effect on E. formosa in the choice test, which suggests a learning behavior of the parasitoid. In both field tests, B. tabaci population was significantly lower on tomato protected by the treated net compared with the same nontreated net. However there was no significant difference in B. tabaci population between the treated 0.9-pore diameter and the nontreated 0.4-pore diameter. We discussed these findings and their implications for the use of repellent netting in integrated pest management in horticulture and more specifically in vegetable production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.