Email alerting services articles cite this article to receive free e-mail alerts when new www.gsapubs.org/cgi/alerts click Subscribe America Bulletin to subscribe to Geological Society of www.gsapubs.org/subscriptions/ click Permission request to contact GSA http://www.geosociety.org/pubs/copyrt.htm#gsa click official positions of the Society. citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect presentation of diverse opinions and positions by scientists worldwide, regardless of their race, includes a reference to the article's full citation. GSA provides this and other forums for the the abstracts only of their articles on their own or their organization's Web site providing the posting to further education and science. This file may not be posted to any Web site, but authors may post works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent their employment. Individual scientists are hereby granted permission, without fees or further Copyright not claimed on content prepared wholly by U.S. government employees within scope of Notes articles must include the digital object identifier (DOIs) and date of initial publication.
Tectonic collision between South America and Panama began at 23-25 Ma. The collision is signifi cant because it ultimately led to development of the Panamanian Isthmus, which in turn had wide-ranging oceanic, climatic, biologic, and tectonic implications. Within the Panama Canal Zone, volcanic activity transitioned from hydrous mantle-wedge−derived arc magmatism to localized extensional arc magmatism at 24 Ma, and overall marks a permanent change in arc evolution. We interpret the arc geochemical change to result from fracturing of the Panama block during initial collision with South America.
Fracturing of the Panama block led to localized crustal extension, normal faulting, sedimentary basin formation, and extensional magmatism in the Canal Basin and Bocas del Toro. Synchronous with this change, both Panama and inboard South America experienced a broad episode of exhumation indicated by (U-Th)/He and fi ssion-track thermochronology coupled with changing geographic patterns of sedimentary deposition in the Colombian Eastern Cordillera and Llanos Basin. Such observations allow for construction of a new tectonic model of the South America-Panama collision, northern Andes uplift and Panama orocline formation. Finally, synchroneity of Panama arc chemical changes and linked uplift indicates that onset of collision and Isthmus formation began earlier than commonly assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.