Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles—AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)—is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle ( C t ) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.
The development of fast and ultrasensitive methods to detect bacterial pathogens at low concentrations is of high relevance for human and animal health care and diagnostics. In this context, surface-enhanced Raman scattering (SERS) offers the promise of a simplified, rapid, and high-sensitive detection of biomolecular interactions with several advantages over previous assay methodologies. In this work, we have conceived reproducible SERS nanosensors based on tailored multilayer octupolar nanostructures which can combine high enhancement factor and remarkable molecular selectivity. We show that coating novel multilayer octupolar metastructures with proper self-assembled monolayer (SAM) and immobilized phages can provide label-free analysis of pathogenic bacteria via SERS leading to a giant increase in SERS enhancement. The strong relative intensity changes of about 2100% at the maximum scattered SERS wavelength, induced by the Brucella bacterium captured, demonstrate the performance advantages of the bacteriophage sensing scheme. We performed measurements at the single-cell level thus allowing fast identification in less than an hour without any demanding sample preparation process. Our results based on designing well-controlled octupolar coupling platforms open up new opportunities toward the use of bacteriophages as recognition elements for the creation of SERS-based multifunctional biochips for rapid culture and label-free detection of bacteria.
The development of a simple and low cost electrochemical impedance immunosensor based on screen printed gold electrode for rapid detection of Escherichia coli in water is reported. The immunosensor is fabricated by immobilizing anti-E. coli antibodies onto a gold surface in a covalent way by the photochemical immobilization technique, a simple procedure able to bind antibodies upright onto gold surfaces. Impedance spectra are recorded in 0.01 M phosphate buffer solution (PBS) containing 10 mM Fe(CN)63−/Fe(CN)64− as redox probe. The Nyquist plots can be modelled with a modified Randles circuit, identifying the charge transfer resistance Rct as the relevant parameter after the immobilization of antibodies, the blocking with BSA and the binding of E. coli. The introduction of a standard amplification procedure leads to a significant enhancement of the impedance increase, which allows one to measure E. coli in drinking water with a limit of detection of 3 × 101 CFU mL−1 while preserving the rapidity of the method that requires only 1 h to provide a “yes/no” response. Additionally, by applying the Langmuir adsorption model, we are able to describe the change of Rct in terms of the “effective” electrode, which is modified by the detection of the analyte whose microscopic conducting properties can be quantified.
The aim of this study was to evaluate the effect of two different conditions of space allowance on reproductive performance and oxidative parameters, biochemical and hormonal profiles in buffalo. The trial was carried out on one hundred pluriparous buffaloes divided into two different groups. Buffaloes in group HDG (high density group -n = 50) were maintained in open yards that allowed 10 m 2 /head while those in group LDG (low density group -n = 50) were maintained in 22 m 2 /head. After 60 days, 45 buffaloes in each group underwent synchronization of ovulation by Ovsynch and were artificially inseminated to assess the reproductive efficiency. On the day of AI blood samples were collected to evaluate oxidative stress, hormonal and metabolic profile. Furthermore, on the same day, blood, saliva and hair samples were collected to assess cortisol levels. Simultaneously, five buffaloes/group, were synchronized but not inseminated and on the day of the hypothetical timed artificial insemination (TAI), follicular fluid was recovered by OPU and blood samples were collected from each animal to evaluate the redox status on both plasma and follicular fluid. Conception rate on day 70 post-AI was similar between the two groups (57.5 vs. 62.5%, in LDG and HDG, respectively). No significant differences were found on redox status, metabolic and hormonal profile and cortisol levels between the groups. In conclusion, on the conditions of this experiment it was observed that the space allowance of 10 m 2 /head did not affect reproductive efficiency in buffalo cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.