Transmissible spongiform encephalopathies (TSEs), or prion diseases, are mammalian neurodegenerative disorders characterized by a posttranslational conversion and brain accumulation of an insoluble, protease-resistant isoform (PrP Sc ) of the host-encoded cellular prion protein (PrP C ). Human and animal TSE agents exist as different phenotypes that can be biochemically differentiated on the basis of the molecular mass of the protease-resistant PrP Sc fragments and the degree of glycosylation. Epidemiological, molecular, and transmission studies strongly suggest that the single strain of agent responsible for bovine spongiform encephalopathy (BSE) has infected humans, causing variant Creutzfeldt-Jakob disease. The unprecedented biological properties of the BSE agent, which circumvents the so-called ''species barrier'' between cattle and humans and adapts to different mammalian species, has raised considerable concern for human health. To date, it is unknown whether more than one strain might be responsible for cattle TSE or whether the BSE agent undergoes phenotypic variation after natural transmission. Here we provide evidence of a second cattle TSE. The disorder was pathologically characterized by the presence of PrP-immunopositive amyloid plaques, as opposed to the lack of amyloid deposition in typical BSE cases, and by a different pattern of regional distribution and topology of brain PrP Sc accumulation. In addition, Western blot analysis showed a PrP Sc type with predominance of the low molecular mass glycoform and a protease-resistant fragment of lower molecular mass than BSE-PrP Sc . Strikingly, the molecular signature of this previously undescribed bovine PrP Sc was similar to that encountered in a distinct subtype of sporadic Creutzfeldt-Jakob disease.
BACKGROUND Definite diagnosis of sporadic Creutzfeldt–Jakob disease in living patients remains a challenge. A test that detects the specific marker for Creutzfeldt–Jakob disease, the prion protein (PrPCJD), by means of real-time quaking-induced conversion (RT-QuIC) testing of cerebrospinal fluid has a sensitivity of 80 to 90% for the diagnosis of sporadic Creutzfeldt–Jakob disease. We have assessed the accuracy of RT-QuIC analysis of nasal brushings from olfactory epithelium in diagnosing sporadic Creutzfeldt– Jakob disease in living patients. METHODS We collected olfactory epithelium brushings and cerebrospinal fluid samples from patients with and patients without sporadic Creutzfeldt–Jakob disease and tested them using RT-QuIC, an ultrasensitive, multiwell plate–based fluorescence assay involving PrPCJD-seeded polymerization of recombinant PrP into amyloid fibrils. RESULTS The RT-QuIC assays seeded with nasal brushings were positive in 30 of 31 patients with Creutzfeldt–Jakob disease (15 of 15 with definite sporadic Creutzfeldt–Jakob disease, 13 of 14 with probable sporadic Creutzfeldt–Jakob disease, and 2 of 2 with inherited Creutzfeldt–Jakob disease) but were negative in 43 of 43 patients without Creutzfeldt–Jakob disease, indicating a sensitivity of 97% (95% confidence interval [CI], 82 to 100) and specificity of 100% (95% CI, 90 to 100) for the detection of Creutzfeldt–Jakob disease. By comparison, testing of cerebrospinal fluid samples from the same group of patients had a sensitivity of 77% (95% CI, 57 to 89) and a specificity of 100% (95% CI, 90 to 100). Nasal brushings elicited stronger and faster RT-QuIC responses than cerebrospinal fluid (P<0.001 for the between-group comparison of strength of response). Individual brushings contained approximately 105 to 107 prion seeds, at concentrations several logs10 greater than in cerebrospinal fluid. CONCLUSIONS In this preliminary study, RT-QuIC testing of olfactory epithelium samples obtained from nasal brushings was accurate in diagnosing Creutzfeldt–Jakob disease and indicated substantial prion seeding activity lining the nasal vault. (Funded by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and others.)
ObjectiveSingle cases and small series of Guillain-Barré syndrome (GBS) have been reported during the SARS-CoV-2 outbreak worldwide. We evaluated incidence and clinical features of GBS in a cohort of patients from two regions of northern Italy with the highest number of patients with COVID-19.MethodsGBS cases diagnosed in 12 referral hospitals from Lombardy and Veneto in March and April 2020 were retrospectively collected. As a control population, GBS diagnosed in March and April 2019 in the same hospitals were considered.ResultsIncidence of GBS in March and April 2020 was 0.202/100 000/month (estimated rate 2.43/100 000/year) vs 0.077/100 000/month (estimated rate 0.93/100 000/year) in the same months of 2019 with a 2.6-fold increase. Estimated incidence of GBS in COVID-19-positive patients was 47.9/100 000 and in the COVID-19-positive hospitalised patients was 236/100 000. COVID-19-positive patients with GBS, when compared with COVID-19-negative subjects, showed lower MRC sum score (26.3±18.3 vs 41.4±14.8, p=0.006), higher frequency of demyelinating subtype (76.6% vs 35.3%, p=0.011), more frequent low blood pressure (50% vs 11.8%, p=0.017) and higher rate of admission to intensive care unit (66.6% vs 17.6%, p=0.002).ConclusionsThis study shows an increased incidence of GBS during the COVID-19 outbreak in northern Italy, supporting a pathogenic link. COVID-19-associated GBS is predominantly demyelinating and seems to be more severe than non-COVID-19 GBS, although it is likely that in some patients the systemic impairment due to COVID-19 might have contributed to the severity of the whole clinical picture.
ObjectiveTo assess the prevalence and isotypes of anti-nodal/paranodal antibodies to nodal/paranodal proteins in a large chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) cohort, compare clinical features in seronegative vs seropositive patients, and gather evidence of their isotype-specific pathogenic role.MethodsAntibodies to neurofascin-155 (Nfasc155), neurofascin-140/186 (Nfasc140/186), contactin-1 (CNTN1), and contactin-associated protein 1 (Caspr1) were detected with ELISA and/or cell-based assay. Antibody pathogenicity was tested by immunohistochemistry on skin biopsy, intraneural injection, and cell aggregation assay.ResultsOf 342 patients with CIDP, 19 (5.5%) had antibodies against Nfasc155 (n = 9), Nfasc140/186 and Nfasc155 (n = 1), CNTN1 (n = 3), and Caspr1 (n = 6). Antibodies were absent from healthy and disease controls, including neuropathies of different causes, and were mostly detected in patients with European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) definite CIDP (n = 18). Predominant antibody isotypes were immunoglobulin G (IgG)4 (n = 13), IgG3 (n = 2), IgG1 (n = 2), or undetectable (n = 2). IgG4 antibody-associated phenotypes included onset before 30 years, severe neuropathy, subacute onset, tremor, sensory ataxia, and poor response to intravenous immunoglobulin (IVIG). Immunosuppressive treatments, including rituximab, cyclophosphamide, and methotrexate, proved effective if started early in IVIG-resistant IgG4-seropositive cases. Five patients with an IgG1, IgG3, or undetectable isotype showed clinical features indistinguishable from seronegative patients, including good response to IVIG. IgG4 autoantibodies were associated with morphological changes at paranodes in patients' skin biopsies. We also provided preliminary evidence from a single patient about the pathogenicity of anti-Caspr1 IgG4, showing their ability to penetrate paranodal regions and disrupt the integrity of the Nfasc155/CNTN1/Caspr1 complex.ConclusionsOur findings confirm previous data on the tight clinico-serological correlation between antibodies to nodal/paranodal proteins and CIDP. Despite the low prevalence, testing for their presence and isotype could ultimately be part of the diagnostic workup in suspected inflammatory demyelinating neuropathy to improve diagnostic accuracy and guide treatment.Classification of evidenceThis study provides Class III evidence that antibodies to nodal/paranodal proteins identify patients with CIDP (sensitivity 6%, specificity 100%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.