Inhibitors of the secretion of cancer exosomes, which promote cancer progression and metastasis, may not only accelerate exosome biology research but also offer therapeutic benefits for cancer patients. Here we identify sulfisoxazole (SFX) as an inhibitor of small extracellular vesicles (sEV) secretion from breast cancer cells through interference with endothelin receptor A (ETA). SFX, an FDA-approved oral antibiotic, showed significant anti-tumor and anti-metastatic effects in mouse models of breast cancer xenografts, the reduced expression of proteins involved in biogenesis and secretion of sEV, and triggered co-localization of multivesicular endosomes with lysosomes for degradation. We demonstrate the important role of ETA, as target of SFX, by gain- and loss-of-function studies of the ETA protein, through a direct binding assay, and pharmacological and genetic approaches. These findings may provide a foundation for sEV-targeted cancer therapies and the mechanistic studies on sEV biology.
Preventing pathological ocular angiogenesis is key to treating retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. At present there is no small molecule drug on the market to target this process and hence there is a pressing need for developing novel small molecules that can replace or complement the present surgical and biologic therapies for these neovascular eye diseases. Previously, an antiangiogenic homoisoflavanone was isolated from the bulb of a medicinal orchid, Cremastra appendiculata. In this study, we present the synthesis of a novel homoisoflavanone isomer of this compound. Our compound, SH-11052, has antiproliferative activity against human umbilical vein endothelial cells, and also against more ocular disease-relevant human retinal microvascular endothelial cells (HRECs). Tube formation and cell cycle progression of HRECs were inhibited by SH-11052, but the compound did not induce apoptosis at effective concentrations. SH-11052 also decreased TNF-α induced p38 MAPK phosphorylation in these cells. Intriguingly, SH-11052 blocked TNF-α induced IκB-α degradation, and therefore decreased NF-κB nuclear translocation. It decreased the expression of NF-κB target genes and the pro-angiogenic or pro-inflammatory markers VCAM-1, CCL2, IL8, and PTGS2. In addition SH-11052 inhibited VEGF induced activation of Akt but not VEGF receptor autophosphorylation. Based on these results we propose that SH-11052 inhibits inflammation induced angiogenesis by blocking both TNF-α and VEGF mediated pathways, two major pathways involved in pathological angiogenesis. Synthesis of this novel homoisoflavanone opens the door to structure-activity relationship studies of this class of compound and further evaluation of its mechanism and potential to complement existing antiangiogenic drugs.
The standard-of-care therapeutics for the treatment of ocular neovascular diseases like wet age-related macular degeneration (AMD) are biologics targeting vascular endothelial growth factor signaling. There are currently no FDA approved small molecules for treating these blinding eye diseases. Therefore, therapeutic agents with novel mechanisms are critical to complement or combine with existing approaches. Here, we identified soluble epoxide hydrolase (sEH), a key enzyme for epoxy fatty acid metabolism, as a target of an antiangiogenic homoisoflavonoid, SH-11037. SH-11037 inhibits sEH in vitro and in vivo and docks to the substrate binding cleft in the sEH hydrolase domain. sEH levels and activity are up-regulated in the eyes of a choroidal neovascularization (CNV) mouse model. sEH is overexpressed in human wet AMD eyes, suggesting that sEH is relevant to neovascularization. Known sEH inhibitors delivered intraocularly suppressed CNV. Thus, by dissecting a bioactive compound's mechanism, we identified a new chemotype for sEH inhibition and characterized sEH as a target for blocking the CNV that underlies wet AMD.
In this study, we investigated the effect of 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2), a synthetic analogue of gallic acid (3,4,5-trihydroxybenzoic acid), on the mast cell-mediated allergic inflammation and the possible mechanism of action. Mast cells play major roles in immunoglobulin E-mediated allergic responses by the release of histamine, lipid-derived mediators, and pro-inflammatory cytokines. We previously reported the potential effects of gallic acid using allergic inflammation models. For incremental research, we synthesized the SG-HQ2 by the modification of functional groups from gallic acid. SG-HQ2 attenuated histamine release by the reduction of intracellular calcium in human mast cells and primary peritoneal mast cells. The inhibitory efficacy of SG-HQ2 was similar with gallic acid. Enhanced expression of pro-inflammatory cytokines such as tumor necrosis factor-a, interleukin-1b, interleukin-4, and interleukin-6 in activated mast cells was significantly diminished by SG-HQ2 100 times lower concentration of gallic acid. This inhibitory effect was mediated by the reduction of nuclear factor-kB. In animal models, SG-HQ2 inhibited compound 48/80-induced serum histamine release and immunoglobulin E-mediated local allergic reaction, passive cutaneous anaphylaxis. Our results indicate that SG-HQ2, an analogue of gallic acid, might be a possible therapeutic candidate for mast cell-mediated allergic inflammatory diseases through suppression of histamine release and proinflammatory cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.