Background Eosinophilic airway inflammation is heterogeneous in asthmatic patients. We recently described a distinct subtype of asthma defined by the expression of genes inducible by TH2 cytokines in bronchial epithelium. This gene signature, which includes periostin, is present in approximately half of asthmatic patients and correlates with eosinophilic airway inflammation. However, identification of this subtype depends on invasive airway sampling, and hence noninvasive biomarkers of this phenotype are desirable. Objective We sought to identify systemic biomarkers of eosinophilic airway inflammation in asthmatic patients. Methods We measured fraction of exhaled nitric oxide (Feno), peripheral blood eosinophil, periostin, YKL-40, and IgE levels and compared these biomarkers with airway eosinophilia in asthmatic patients. Results We collected sputum, performed bronchoscopy, and matched peripheral blood samples from 67 asthmatic patients who remained symptomatic despite maximal inhaled corticosteroid treatment (mean FEV1, 60% of predicted value; mean Asthma Control Questionnaire [ACQ] score, 2.7). Serum periostin levels are significantly increased in asthmatic patients with evidence of eosinophilic airway inflammation relative to those with minimal eosinophilic airway inflammation. A logistic regression model, including sex, age, body mass index, IgE levels, blood eosinophil numbers, Feno levels, and serum periostin levels, in 59 patients with severe asthma showed that, of these indices, the serum periostin level was the single best predictor of airway eosinophilia (P = .007). Conclusion Periostin is a systemic biomarker of airway eosinophilia in asthmatic patients and has potential utility in patient selection for emerging asthma therapeutics targeting TH2 inflammation.
IL-33, a new member of the IL-1 cytokine family, promotes Th2 inflammation, but evidence on the implications of this cytokine in asthma is lacking. IL-33 would be mainly expressed by structural cells, but whether proinflammatory cytokines modulate its expression in airway smooth muscle cells (ASMC) is unknown. Endobronchial biopsies were obtained from adults with mild (n = 8), moderate (n = 8), severe (n = 9), asthma and from control subjects (n = 5). Immunocytochemistry, laser-capture microdissection, reverse transcriptase, and real-time quantitative PCR were used for determining IL-33 expression in the lung tissues. ASMC isolated from resected lung specimens were cultured with proinflammatory cytokines and with dexamethasone. IL-33 expression by ASMC was determined by PCR, ELISA, and Western blotting. Higher levels of IL-33 transcripts are detected in biopsies from asthmatic compared with control subjects, and especially in subjects with severe asthma. ASMC show IL-33 expression at both protein and mRNA levels. IL-33 and TNF-α transcript levels correlate in the lung tissues, and TNF-α up-regulates IL-33 expression by cultured ASMC in a time- and dose-dependent manner. IFN-γ also increases IL-33 expression and shows synergistic effect with TNF-α. Dexamethasone fails to abolish TNF-α-induced IL-33 up-regulation. IL-33 expression increases in bronchial biopsies from subjects with asthma compared with controls, as well as subjects with asthma severity. ASMC are a source of the IL-33 cytokine. Our data propose IL-33 as a novel inflammatory marker of severe and refractory asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.