Objective Proposing a scoring tool to predict COVID-19 patients' outcomes based on initially assessed clinical and CT features. Methods All patients, who were referred to a tertiary-university hospital respiratory triage (March 27-April 26, 2020), were highly clinically suggestive for COVID-19 and had undergone a chest CT scan were included. Those with positive rRT-PCR or highly clinically suspicious patients with typical chest CT scan pulmonary manifestations were considered confirmed COVID-19 for additional analyses. Patients, based on outcome, were categorized into outpatient, ordinary-ward admitted, intensive care unit (ICU) admitted, and deceased; their demographic, clinical, and chest CT scan parameters were compared. The pulmonary chest CT scan features were scaled with a novel semi-quantitative scoring system to assess pulmonary involvement (PI). Results Chest CT scans of 739 patients (mean age = 49.2 ± 17.2 years old, 56.7% male) were reviewed; 491 (66.4%), 176 (23.8%), and 72 (9.7%) cases were managed outpatient, in an ordinary ward, and ICU, respectively. A total of 439 (59.6%) patients were confirmed COVID-19 cases; their most prevalent chest CT scan features were ground-glass opacity (GGO) (93.3%), pleural-based peripheral distribution (60.3%), and multi-lobar (79.7%), bilateral (76.6%), and lower lobes (RLL and/or LLL) (89.1%) involvement. Patients with lower SpO 2 , advanced age, RR, total PI score or PI density score, and diffuse distribution or involvement of multi-lobar, bilateral, or lower lobes were more likely to be ICU admitted/expired. After adjusting for confounders, predictive models found cutoffs of age ≥ 53, SpO 2 ≤ 91, and PI score ≥ 8 (15) for ICU admission (death). A combination of all three factors showed 89.1% and 95% specificity and 81.9% and 91.4% accuracy for ICU admission and death outcomes, respectively. Solely evaluated high PI score had high sensitivity, specificity, and NPV in predicting the outcome as well. ConclusionWe strongly recommend patients with age ≥ 53, SpO 2 ≤ 91, and PI score ≥ 8 or even only high PI score to be considered as high-risk patients for further managements and care plans. Key Points • Chest CT scan is a valuable tool in prioritizing the patients in hospital triage.• A more accurate and novel 35-scale semi-quantitative scoring system was designed to predict the COVID-19 patients' outcome.• Patients with age ≥ 53, SpO 2 ≤ 91, and PI score ≥ 8 or even only high PI score should be considered high-risk patients.
Objective: In this large multi-institutional study, we aimed to analyze the prognostic power of computed tomography (CT)-based radiomics models in COVID-19 patients. Methods: CT images of 14,339 COVID-19 patients with overall survival outcome were collected from 19 medical centers. Whole lung segmentations were performed automatically using a previously validated deep learning-based model, and regions of interest were further evaluated and modified by a human observer. All images were resampled to an isotropic voxel size, intensities were discretized into 64-binning size, and 105 radiomics features, including shape, intensity, and texture features were extracted from the lung mask. Radiomics features were normalized using Z-score normalization. High-correlated features using Pearson (R2>0.99) were eliminated. We applied the Synthetic Minority Oversampling Technique (SMOT) algorithm in only the training set for different models to overcome unbalance classes. We used 4 feature selection algorithms, namely Analysis of Variance (ANOVA), Kruskal-Wallis (KW), Recursive Feature Elimination (RFE), and Relief. For the classification task, we used seven classifiers, including Logistic Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost (AB), Naive Bayes (NB), and Multilayer Perceptron (MLP). The models were built and evaluated using training and testing sets, respectively. Specifically, we evaluated the models using 10 different splitting and cross-validation strategies, including different types of test datasets (e.g. non-harmonized vs. ComBat-harmonized datasets). The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were reported for models evaluation. Results: In the test dataset (4301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83(sd:0.01) (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + RF classifier. In RT-PCR-only positive test sets (3644), similar results were achieved, and there was no statistically significant difference. In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in highest performance of AUC, reaching 0.83 (sd:0.01) (CI95%: 0.81-0.85), with sensitivity and specificity of 0.77 and 0.74, respectively. At the same time, ComBat harmonization did not depict statistically significant improvement relevant to non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and LR classifier resulted in the highest performance of AUC (0.80 (sd:0.084)) with sensitivity and specificity of 0.77 (sd:0.11) and 0.76 (sd: 0.075), respectively. Conclusion: Lung CT radiomics features can be used towards robust prognostic modeling of COVID-19 in large heterogeneous datasets gathered from multiple centers. As such, CT radiomics-based model has significant potential for use in prospective clinical settings towards improved management of COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.