Background: Senescent cells, which can release factors that cause inflammation and dysfunction, the senescenceassociated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. Methods: In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68•7 ± 3•1 years old; 2 female; BMI:33•9 ± 2•3 kg/m 2 ; eGFR:27•0 ± 2•1 mL/ min/1•73m 2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. Findings: D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16 INK4A-and p21 CIP1-expressing cells, cells with senescence-associated β-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16 INK4A+ and p21 CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and −12. Interpretation: "Hit-and-run" treatment with senolytics, which in the case of D + Q have elimination half-lives b11 h, significantly decreases senescent cell burden in humans.
Background: Cellular senescence is a key mechanism that drives age-related diseases, but has yet to be targeted therapeutically in humans. Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal cellular senescenceassociated disease. Selectively ablating senescent cells using dasatinib plus quercetin (DQ) alleviates IPF-related dysfunction in bleomycin-administered mice. Methods: A two-center, open-label study of intermittent DQ (D:100 mg/day, Q:1250 mg/day, three-days/week over three-weeks) was conducted in participants with IPF (n = 14) to evaluate feasibility of implementing a senolytic intervention. The primary endpoints were retention rates and completion rates for planned clinical assessments. Secondary endpoints were safety and change in functional and reported health measures. Associations with the senescence-associated secretory phenotype (SASP) were explored. Findings: Fourteen patients with stable IPF were recruited. The retention rate was 100% with no DQ discontinuation; planned clinical assessments were complete in 13/14 participants. One serious adverse event was reported. Non-serious events were primarily mild-moderate, with respiratory symptoms (n = 16 total events), skin irritation/bruising (n = 14), and gastrointestinal discomfort (n = 12) being most frequent. Physical function evaluated as 6-min walk distance, 4-m gait speed, and chair-stands time was significantly and clinicallymeaningfully improved (p b .05). Pulmonary function, clinical chemistries, frailty index (FI-LAB), and reported health were unchanged. DQ effects on circulat.ing SASP factors were inconclusive, but correlations were observed between change in function and change in SASP-related matrix-remodeling proteins, microRNAs, and proinflammatory cytokines (23/48 markers r ≥ 0.50). Interpretation: Our first-in-humans open-label pilot supports study feasibility and provides initial evidence that senolytics may alleviate physical dysfunction in IPF, warranting evaluation of DQ in larger randomized controlled trials for senescence-related diseases. ClinicalTrials.gov identifier: NCT02874989 (posted 2016-2018).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.