Historically, most vaccines have been based on killed or live‐attenuated infectious agents. Although very successful at immunizing populations against disease, both approaches raise safety concerns and often have limited production capacity. This has resulted in increased emphasis on the development of subunit vaccines. Several recombinant systems have been considered for subunit vaccine manufacture, including plants, which offer advantages both in cost and in scale of production. We have developed a plant expression system utilizing a ‘launch vector’, which combines the advantageous features of standard agrobacterial binary plasmids and plant viral vectors, to achieve high‐level target antigen expression in plants. As an additional feature, to aid in target expression, stability and purification, we have engineered a thermostable carrier molecule to which antigens are fused. We have applied this launch vector/carrier system to engineer and express target antigens from various pathogens, including, influenza A/Vietnam/04 (H5N1) virus.
Citrus tristeza virus (CTV), a member of the Closteroviridae, has an approximately 20-kb positive-sense RNA genome with two 5' ORFs translated from the genomic RNA and 10 3' genes expressed via nine or ten 3'-terminal subgenomic (sg) RNAs. The expression of the 3' genes appears to have properties intermediate between the smaller viruses of the "alphavirus supergroup" and the larger viruses of the Coronaviridae. The sgRNAs are contiguous with the genome, without a common 5' leader, and are associated with large amounts of complementary sgRNAs. Production of the different sgRNAs is regulated temporally and quantitatively, with the highly expressed genes having noncoding regions (NCR) 5' of the ORFs. The cis-acting elements that control the highly expressed major coat protein (CP) gene and the intermediately expressed minor coat protein (CPm) gene were mapped and compared. Mutational analysis showed that the CP sgRNA controller element mapped within nts -47 to -5 upstream of the transcription start site, entirely within the NCR, while the CPm control region mapped within a 57 nt sequence within the upstream ORF. Although both regions were predicted to fold into two stem-loop structures, mutagenesis suggested that primary structure might be more important than the secondary structure. Because each controller element produced large amounts of 3'-terminal positive- and negative-stranded sgRNAs, we could not differentiate whether the cis-acting element functioned as a promoter or terminator, or both. Reversal of the control element unexpectedly produced large amounts of a negative-stranded sgRNA apparently by termination of negative-stranded genomic RNA synthesis. Further examination of controller elements in their native orientation showed normal production of abundant amounts of positive-stranded sgRNAs extending to near the 5'-terminus, corresponding to termination at each controller element. Thus, each controller element produced three sgRNAs, a 5'-terminal positive strand and both positive- and negative-stranded 3'-terminal RNAs. Therefore, theoretically CTV could produce 30-33 species of RNAs in infected cells.
Citrus tristeza virus (CTV), a member of the Closteroviridae, has a 19.3-kb positive-stranded RNA genome that is organized into 12 open reading frames (ORFs) with the 10 3 genes expressed via a nested set of nine or ten 3-coterminal subgenomic mRNAs (sgRNAs). Relatively large amounts of negative-stranded RNAs complementary to both genomic and sgRNAs accumulate in infected cells. As is characteristic of RNA viruses, wild-type CTV produced more positive than negative strands, with the plus-to-minus ratios of genomic and sgRNAs estimated at 10 to 20:1 and 40 to 50:1, respectively. However, a mutant with all of the 3 genes deleted replicated efficiently, but produced plus to minus strands at a markedly decreased ratio of 1 to 2:1. Deletion analysis of 3-end genes revealed that the p23 ORF was involved in asymmetric RNA accumulation. A mutation which caused a frameshift after the fifth codon resulted in nearly symmetrical RNA accumulation, suggesting that the p23 protein, not a cis-acting element within the p23 ORF, controls asymmetric accumulation of CTV RNAs. Further in-frame deletion mutations in the p23 ORF suggested that amino acid residues 46 to 180, which contained RNA-binding and zinc finger domains, were indispensable for asymmetrical RNA accumulation, while the N-terminal 5 to 45 and C-terminal 181 to 209 amino acid residues were not absolutely required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.