Introduction: In India, the proportion of older population is projected to increase from 8% in 2015 to 19% in 2050 and a third of the country's population will be older adults by end of the century. Multimorbidity is common among the elderly and the prevalence increases with age. Chronic conditions are most often present as clusters and it's critical to explore the prevalent pattern of clustering for better public health strategies. Method: A cross-sectional study was conducted among 725 rural older adults (>60 years) in Tigiria block of Odisha, India. Multimorbidity status was assessed using the prior validated MAQ-PC tool. Survey was conducted using android tablets installed with open data kit software. While Euclidean distances using K-means clustering algorithm were used to estimate the similarity or dissimilarity of observations. The optimum numbers of clusters were determined using silhouette method. Data were analyzed using multiple open source packages of R statistical programming software ver-3.6.3. Result: The overall prevalence of multimorbidity was 48.8% of which dyads (25%) were the most common form, followed by triads (15.2%). The prevalence of multimorbidity was higher in females (50.4%) than males (47.4%). The optimal number of clusters was found to be 3. While arthritis alone was a separate cluster, hypertension and acid peptic disease were in another cluster and all the rest conditions were included in the third cluster. Conclusion: The cluster analysis to measure of proximity suggested arthritis, hypertension, and acid peptic disease are the diseases that occur mostly in isolation with the other chronic conditions in the rural elderly.
The study aims to estimate and compare the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence, the fraction of asymptomatic or subclinical infections in the population, determine the demographic risk factors and analyse the antibody development at different time points among adults in Bhubaneswar city, India. This was a serial three-round cross-sectional, community-based study where participants were selected from the residents of Bhubaneswar city using multi-stage random sampling. Blood samples were collected during household visits along with demographic and clinical data from every participant. Total anti-SARS-CoV-2 antibody present in serum was assessed using the electro-chemiluminescence immunoassay platform. Temporal comparisons of the community seroprevalence were performed against the detected number of cumulative cases, active cases, recoveries and deaths. A total of 3693 participants were enrolled in this study with a cumulative non-response rate of 18.33% in all the three rounds. The gender-weighted seroprevalence for the city in the first round was 1.55% (95% confidence interval (CI) 0.84–2.58), second round was 5.27% (95% CI 4.13–6.59) and in the third round was 49.04% (95% CI 46.39–51.68). In the first round, the seroprevalence was found to be highest in the elderly population, whereas the seroprevalence for the second and third phases was highest in the age group of 30–39 years. Seroprevalence showed an increasing trend over the three time periods, with the highest seropositivity rates among individuals sampled between 16 and 18 September 2020. By the third round, 93.93% of those who had previously been tested positive by real-time reverse transcription polymerase chain reaction had seroconversion and 46.57% of those who had been tested negative also showed seroconversion. Infection to case ratio during first round was 27.05, for second round and third round it was 5.62 and 17.91, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.