Most massive stars are members of a binary or a higher-order stellar system, where the presence of a binary companion can decisively alter their evolution via binary interactions. Interacting binaries are also important astrophysical laboratories for the study of compact objects. Binary population synthesis studies have been used extensively over the last two decades to interpret observations of compact-object binaries and to decipher the physical processes that lead to their formation. Here, we present POSYDON, a novel, publicly available, binary population synthesis code that incorporates full stellar structure and binary-evolution modeling, using the MESA code, throughout the whole evolution of the binaries. The use of POSYDON enables the self-consistent treatment of physical processes in stellar and binary evolution, including: realistic mass-transfer calculations and assessment of stability, internal angular-momentum transport and tides, stellar core sizes, mass-transfer rates, and orbital periods. This paper describes the detailed methodology and implementation of POSYDON, including the assumed physics of stellar and binary evolution, the extensive grids of detailed single- and binary-star models, the postprocessing, classification, and interpolation methods we developed for use with the grids, and the treatment of evolutionary phases that are not based on precalculated grids. The first version of POSYDON targets binaries with massive primary stars (potential progenitors of neutron stars or black holes) at solar metallicity.
Most massive stars are members of a binary or a higher-order stellar systems, where the presence of a binary companion can decisively alter their evolution via binary interactions. Interacting binaries are also important astrophysical laboratories for the study of compact objects. Binary population synthesis studies have been used extensively over the last two decades to interpret observations of compact-object binaries and to decipher the physical processes that lead to their formation. Here, we present POSYDON, a novel , binary population synthesis code that incorporates full stellar-structure and binary-evolution modeling, using the MESA code, throughout the whole evolution of the binaries. The use of POSYDON enables the self-consistent treatment of physical processes in stellar and binary evolution, including: realistic mass-transfer calculations and assessment of stability, internal angularmomentum transport and tides, stellar core sizes, mass-transfer rates and orbital periods. This paper describes the detailed methodology and implementation of POSYDON, including the assumed physics of stellar-and binary-evolution, the extensive grids of detailed single-and binary-star models, the post-processing, classification and interpolation methods we developed for use with the grids, and the treatment of evolutionary phases that are not based on pre-calculated grids. The first version of POSYDON targets binaries with massive primary stars (potential progenitors of neutron stars or black holes) at solar metallicity.
Background Although the mental health impacts of COVID-19 on the general population have been well studied, studies of the long-term impacts of COVID-19 on infected individuals are relatively new. To date, depression, anxiety, and neurological symptoms associated with post–COVID-19 syndrome (PCS) have been observed in the months following COVID-19 recovery. Suicidal thoughts and behavior (STB) have also been preliminarily proposed as sequelae of COVID-19. Objective We asked 3 questions. First, do participants reporting a history of COVID-19 diagnosis or a close relative having severe COVID-19 symptoms score higher on depression (Patient Health Questionnaire-9 [PHQ-9]) or state anxiety (State Trait Anxiety Index) screens than those who do not? Second, do participants reporting a COVID-19 diagnosis score higher on PCS-related PHQ-9 items? Third, do participants reporting a COVID-19 diagnosis or a close relative having severe COVID-19 symptoms score higher in STB before, during, or after the first year of the pandemic? Methods This preliminary study analyzed responses to a COVID-19 and mental health questionnaire obtained from a US population sample, whose data were collected between February 2021 and March 2021. We used the Mann-Whitney U test to detect differences in the medians of the total PHQ-9 scores, PHQ-9 component scores, and several STB scores between participants claiming a past clinician diagnosis of COVID-19 and those denying one, as well as between participants claiming severe COVID-19 symptoms in a close relative and those denying them. Where significant differences existed, we created linear regression models to predict the scores based on COVID-19 response as well as demographics to identify potential confounding factors in the Mann-Whitney relationships. Moreover, for STB scores, which corresponded to 5 questions asking about 3 different time intervals (i.e., past 1 year or more, past 1 month to 1 year, and past 1 month), we developed repeated-measures ANOVAs to determine whether scores tended to vary over time. Results We found greater total depression (PHQ-9) and state anxiety (State Trait Anxiety Index) scores in those with COVID-19 history than those without (Bonferroni P=.001 and Bonferroni P=.004) despite a similar history of diagnosed depression and anxiety. Greater scores were noted for a subset of depression symptoms (PHQ-9 items) that overlapped with the symptoms of PCS (all Bonferroni Ps<.05). Moreover, we found greater overall STB scores in those with COVID-19 history, equally in time windows preceding, during, and proceeding infection (all Bonferroni Ps<.05). Conclusions We confirm previous studies linking depression and anxiety diagnoses to COVID-19 recovery. Moreover, our findings suggest that depression diagnoses associated with COVID-19 history relate to PCS symptoms, and that STB associated with COVID-19 in some cases precede infection.
Background The COVID-19 disease results from infection by the SARS-CoV-2 virus to produce a range of mild to severe physical, neurological, and mental health symptoms. The COVID-19 pandemic has indirectly caused significant emotional distress, triggering the emergence of mental health symptoms in individuals who were not previously affected or exacerbating symptoms in those with existing mental health conditions. Emotional distress and certain mental health conditions can lead to violent ideation and disruptive behavior, including aggression, threatening acts, deliberate harm toward other people or animals, and inattention to or noncompliance with education or workplace rules. Of the many mental health conditions that can be associated with violent ideation and disruptive behavior, psychosis can evidence greater vulnerability to unpredictable changes and being at a greater risk for them. Individuals with psychosis can also be more susceptible to contracting COVID-19 disease. Objective This study aimed to investigate whether violent ideation, disruptive behavior, or psychotic symptoms were more prevalent in a population with COVID-19 and did not precede the pandemic. Methods In this preliminary study, we analyzed questionnaire responses from a population sample (N=366), received between the end of February 2021 and the start of March 2021 (1 year into the COVID-19 pandemic), regarding COVID-19 illness, violent ideation, disruptive behavior, and psychotic symptoms. Using the Wilcoxon rank sum test followed by multiple comparisons correction, we compared the self-reported frequency of these variables for 3 time windows related to the past 1 month, past 1 month to 1 year, and >1 year ago among the distributions of people who answered whether they tested positive or were diagnosed with COVID-19 by a clinician. We also used multivariable logistic regression with iterative resampling to investigate the relationship between these variables occurring >1 year ago (ie, before the pandemic) and the likelihood of contracting COVID-19. Results We observed a significantly higher frequency of self-reported violent ideation, disruptive behavior, and psychotic symptoms, for all 3 time windows of people who tested positive or were diagnosed with COVID-19 by a clinician. Using multivariable logistic regression, we observed 72% to 94% model accuracy for an increased incidence of COVID-19 in participants who reported violent ideation, disruptive behavior, or psychotic symptoms >1 year ago. Conclusions This preliminary study found that people who reported a test or clinician diagnosis of COVID-19 also reported higher frequencies of violent ideation, disruptive behavior, or psychotic symptoms across multiple time windows, indicating that they were not likely to be the result of COVID-19. In parallel, participants who reported these behaviors >1 year ago (ie, before the pandemic) were more likely to be diagnosed with COVID-19, suggesting that violent ideation, disruptive behavior, in addition to psychotic symptoms, were associated with COVID-19 with an approximately 70% to 90% likelihood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.