Self-assembly of rigid building blocks with explicit shape and symmetry is substantially influenced by the geometric factors and remains largely unexplored. We report the selective assembly behaviors of a class of precisely defined, nanosized giant tetrahedra constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces precise positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper A15 phase, which resembles the essential structural features of certain metal alloys but at a larger length scale. These results demonstrate the power of persistent molecular geometry with balanced enthalpy and entropy in creating thermodynamically stable supramolecular lattices with properties distinct from those of other self-assembling soft materials.
2D transition metal carbides or nitrides, known as MXenes, are a new family of 2D materials with close to 30 members experimentally synthesized and dozens more theoretically investigated. Because of the abundant surface terminations, MXenes have been compounded with various materials by multi-interactions. In addition to the prevented aggregation and oxidation of MXene flakes, the MXene/polymer membranes exhibit outstanding mechanical, thermal, and electrical properties due to the synergistic effects. However, relatively little is currently known about the MXene/polymer membranes and a special review on the progress of the synthesis, properties, and applications of MXene/polymer membranes has not been reported to date. Herein, this Review starts with an introduction of the synthesis and properties of MXenes. Then the development of MXene/polymer membranes will be discussed, which aims to summarize various approaches of fabricating MXene/polymer membranes and their fascinating properties. The focus then turns to their exciting potential applications in various fields such as filtration, electromagnetic interference (EMI) shielding, energy storage devices, wearable electronics, etc. Finally, outlooks and perspectives for the future challenges and prospects of MXene/polymer membranes are provided.
China is facing a rapid upsurge in cases of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection due to large numbers of paid blood donors (PBD), injection drug users (IDU), and sexual partners of infected individuals. In this report, a total of 236 HIV-1-positive blood samples were collected from PBD, IDU, and their sexual partners in the most severely affected provinces, such as Henan, Yunnan, Guangxi, and Xinjiang. PCR was used to amplify the p17 region of gag and the C2-V3 region of env of HIV-1 and the 5 noncoding region and a region of E1/E2 of HCV. Genetic characterization of viral sequences indicated that there are two major epidemics of HIV-1 and multiple HCV epidemics in China. The PBD and transfusion recipients in Henan harbored HIV-1 subtype B, which is similar to the virus found in Thailand, and HCV genotypes 1b and 2a, whereas the IDU in Yunnan, Guangxi, and Xinjiang carried HIV-1 circulating recombinant forms 07 and 08, which resemble those in India, and HCV genotypes 1b, 3a, and 3b. Our findings show that the epidemics of HIV-1 and HCV infection in China are the consequences of multiple introductions. The distinct distribution patterns of both the HIV-1 and HCV genotypes in the different high-risk groups are tightly linked to the mode of transmission rather than geographic proximity. These findings provide information relevant to antiviral therapy and vaccine development in China and should assist public health workers in implementing measures to reduce the further dissemination of these viruses in the world's most populous nation.
The SAM domain and HD domain containing protein 1 (SAMHD1) inhibits retroviruses, DNA viruses and long interspersed element 1 (LINE-1). Given that in dividing cells, SAMHD1 loses its antiviral function yet still potently restricts LINE-1, we propose that, instead of blocking viral DNA synthesis by virtue of its dNTP triphosphohydrolase activity, SAMHD1 may exploit a different mechanism to control LINE-1. Here, we report a new activity of SAMHD1 in promoting cellular stress granule assembly, which correlates with increased phosphorylation of eIF2α and diminished eIF4A/eIF4G interaction. This function of SAMHD1 enhances sequestration of LINE-1 RNP in stress granules and consequent blockade to LINE-1 retrotransposition. In support of this new mechanism of action, depletion of stress granule marker proteins G3BP1 or TIA1 abrogates stress granule formation and overcomes SAMHD1 inhibition of LINE-1. Together, these data reveal a new mechanism for SAMHD1 to control LINE-1 by activating cellular stress granule pathway.
Since their discovery in 2011, MXenes (abbreviation for transition metal carbides, nitrides, and carbonitrides) have emerged as a rising star in the family of 2D materials owing to their unique properties. Although the primary research interest is still focused on pristine MXenes and their composites, much attention has in recent years been paid also to MXenes with diverse compositions. To this end, this work offers a comprehensive overview of the progress on compositional engineering of MXenes in terms of doping and substituting from theoretical predictions to experimental investigations. Synthesis and properties are briefly introduced for pristine MXenes and then reviewed for hetero‐MXenes. Theoretical calculations regarding the doping/substituting at M, X, and T sites in MXenes and the role of vacancies are summarized. After discussing the synthesis of hetero‐MXenes with metal/nonmetal (N, S, P) elements by in situ and ex situ strategies, the focus turns to their emerging applications in various fields such as energy storage, electrocatalysts, and sensors. Finally, challenges and prospects of hetero‐MXenes are addressed. It is anticipated that this review will be beneficial to bridge the gap between predictions and experiments as well as to guide the future design of hetero‐MXenes with high performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.