BackgroundNKT cells play a protective role in ischemia reperfusion (IR) injury, of which the trafficking in the body and recruitment in injured organs can be influenced by immunosuppressive therapy. Therefore, we investigated the effects of rapamycin on kidneys exposed to IR injury in early stage and on trafficking of NKT cells in a murine model.Material and methodsBalb/c mice were subjected to kidney 30 min ischemia followed by 24 h reperfusion. Rapamycin (2.5 ml/kg) was administered by gavage daily, starting 1 day before the operation. Renal function and histological changes were assessed. The proportion of NKT cells in peripheral blood, spleen and kidney was detected by flow cytometry. The chemokines and corresponding receptor involved in NKT cell trafficking were determined by RT-PCR and flow cytometry respectively.ResultsRapamycin significantly improved renal function and ameliorated histological injury. In rapamycin-treated group, the proportion of NKT cells in spleen was significantly decreased but increased in peripheral blood and kidney. In addition, the CXCR3+ NKT cell in the kidney increased remarkably in the rapamycin-treated group. The chemokines, CXCL9 and CXCL10, as the ligands of CXCR3, were also increased in the rapamycin-treated kidney.ConclusionsRapamycin may recruit NKT cells from spleen to the IR-induced kidney to ameliorate renal IR injury in the early stage.
Renal ischemia-reperfusion injury (IRI) is present in numerous diseases and is observed following certain treatments, including renal transplantation. Preventing tubular epithelial cells (TECs) from undergoing apoptosis is vital for treatment of renal IRI. Cyclic helix B peptide (CHBP) is a novel agent that has a protective effect on renal IRI in vivo. In the present study, the effect and underlying mechanism of CHBP on TECs was investigated. The HK-2 human renal proximal tubular epithelial cell line was treated with 500 µmol/l H2O2 for 4 h prior to determining the effect of CHBP pretreatment for 1 h on cell viability, caspase 3 activity and expression levels, expression levels of oxidative stress markers, endoplasmic reticulum (ER) stress markers, NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and autophagy markers. This was investigated using a Cell Counting kit 8, a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay, western blotting, reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Results revealed that pretreatment with CHBP enhanced HK-2 cell viability, the glutathione/glutathione disulphide ratio, activation of Nrf2 and mRNA expression levels of HO-1 and the expression levels of beclin-1 and light chain 3 A/B-II/I. Conversely, CHBP pretreatment reduced the expression levels of reactive oxygen species, the activity and protein expression levels of capase-3, the mRNA and protein expression levels of C/EBP homologous protein and binding immunoglobulin protein, and the expression levels of phosphorylated (p)-mechanistic target of rapamycin (mTOR) Ser2448 and p62 during oxidative stress. However, the expression of p-mTOR Ser2481 was enhanced after CHBP pretreatment. CHBP pretreatment reduced the expression levels of reactive oxygen species, the activity and protein expression levels of capase-3, the mRNA and protein expression levels of C/EBP homologous protein and binding immunoglobulin protein, and the expression levels of phosphorylated (p)-mechanistic target of rapamycin (mTOR) Ser2481, p62 and p-mTOR Ser 2448 during oxidative stress. In conclusion, CHBP pretreatment protected HK-2 cells from H2O2-induced injury, inhibited ER stress and pro-apoptotic pathways, and activated the Nrf2 signalling pathway and autophagy. These results provide a potential mechanism of how CHBP protects against renal IRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.